Molecular population genetics of X-linked genes in Drosophila pseudoobscura

M. Kovacevic, S. W. Schaeffer

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

This article presents a nucleotide sequence analysis of 500 bp determined in each of five X-linked genes, runt, sisterlessA, period, esterase 5, and Heat-shock protein 83, in 40 Drosophila pseudoobscura strains collected from two populations. Estimates of the neutral migration parameter for the five loci show that gene flow among D. pseudoobscura populations is sufficient to homogenize inversion frequencies across the range of the species. Nucleotide diversity at each locus fails to reject a neutral model of molecular evolution. The sample of 40 chromosomes included six Sex-ratio inversions, a series of three nonoverlapping inversions that are associated with a strong meiotic drive phenotype. The selection driven by the Sex-ratio meiotic drive element has not fixed variation across the X chromosome of D. pseudoobscura because, while significant linkage disequilibrium was observed within the sisterlessA, period, and esterase 5 genes, we did not find evidence for nonrandom association among loci. The Sex-ratio chromosome was estimated to be 25,000 years old based on the decomposition of linkage disequilibrium between esterase 5 and Heat-shock protein 83 or 1 million years old based on the net divergence of esterase 5 between Standard and Sex-ratio chromosomes. Genetic diversity was depressed within esterase 5 within Sex-ratio chromosomes, while the four other genes failed to show a reduction in heterozygosity in the Sex-ratio background. The reduced heterogeneity in esterase 5 is due either to its location near one of the Sex-ratio inversion breakpoints or that it is closely linked to a gene or genes responsible for the Sex-ratio meiotic drive system.

Original languageEnglish (US)
Pages (from-to)155-172
Number of pages18
JournalGenetics
Volume156
Issue number1
StatePublished - Oct 3 2000

Fingerprint

X-Linked Genes
Sex Ratio
Population Genetics
Drosophila
Molecular Biology
Esterases
Sex Chromosomes
Linkage Disequilibrium
Genes
Chromosomes, Human, 13-15
Safe Sex
Gene Flow
Molecular Evolution
X Chromosome
Population
Sequence Analysis
Nucleotides
Chromosomes
Phenotype

All Science Journal Classification (ASJC) codes

  • Genetics

Cite this

@article{f07da3d607774c1b9b2e3749c2f12396,
title = "Molecular population genetics of X-linked genes in Drosophila pseudoobscura",
abstract = "This article presents a nucleotide sequence analysis of 500 bp determined in each of five X-linked genes, runt, sisterlessA, period, esterase 5, and Heat-shock protein 83, in 40 Drosophila pseudoobscura strains collected from two populations. Estimates of the neutral migration parameter for the five loci show that gene flow among D. pseudoobscura populations is sufficient to homogenize inversion frequencies across the range of the species. Nucleotide diversity at each locus fails to reject a neutral model of molecular evolution. The sample of 40 chromosomes included six Sex-ratio inversions, a series of three nonoverlapping inversions that are associated with a strong meiotic drive phenotype. The selection driven by the Sex-ratio meiotic drive element has not fixed variation across the X chromosome of D. pseudoobscura because, while significant linkage disequilibrium was observed within the sisterlessA, period, and esterase 5 genes, we did not find evidence for nonrandom association among loci. The Sex-ratio chromosome was estimated to be 25,000 years old based on the decomposition of linkage disequilibrium between esterase 5 and Heat-shock protein 83 or 1 million years old based on the net divergence of esterase 5 between Standard and Sex-ratio chromosomes. Genetic diversity was depressed within esterase 5 within Sex-ratio chromosomes, while the four other genes failed to show a reduction in heterozygosity in the Sex-ratio background. The reduced heterogeneity in esterase 5 is due either to its location near one of the Sex-ratio inversion breakpoints or that it is closely linked to a gene or genes responsible for the Sex-ratio meiotic drive system.",
author = "M. Kovacevic and Schaeffer, {S. W.}",
year = "2000",
month = "10",
day = "3",
language = "English (US)",
volume = "156",
pages = "155--172",
journal = "Genetics",
issn = "0016-6731",
publisher = "Genetics Society of America",
number = "1",

}

Molecular population genetics of X-linked genes in Drosophila pseudoobscura. / Kovacevic, M.; Schaeffer, S. W.

In: Genetics, Vol. 156, No. 1, 03.10.2000, p. 155-172.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Molecular population genetics of X-linked genes in Drosophila pseudoobscura

AU - Kovacevic, M.

AU - Schaeffer, S. W.

PY - 2000/10/3

Y1 - 2000/10/3

N2 - This article presents a nucleotide sequence analysis of 500 bp determined in each of five X-linked genes, runt, sisterlessA, period, esterase 5, and Heat-shock protein 83, in 40 Drosophila pseudoobscura strains collected from two populations. Estimates of the neutral migration parameter for the five loci show that gene flow among D. pseudoobscura populations is sufficient to homogenize inversion frequencies across the range of the species. Nucleotide diversity at each locus fails to reject a neutral model of molecular evolution. The sample of 40 chromosomes included six Sex-ratio inversions, a series of three nonoverlapping inversions that are associated with a strong meiotic drive phenotype. The selection driven by the Sex-ratio meiotic drive element has not fixed variation across the X chromosome of D. pseudoobscura because, while significant linkage disequilibrium was observed within the sisterlessA, period, and esterase 5 genes, we did not find evidence for nonrandom association among loci. The Sex-ratio chromosome was estimated to be 25,000 years old based on the decomposition of linkage disequilibrium between esterase 5 and Heat-shock protein 83 or 1 million years old based on the net divergence of esterase 5 between Standard and Sex-ratio chromosomes. Genetic diversity was depressed within esterase 5 within Sex-ratio chromosomes, while the four other genes failed to show a reduction in heterozygosity in the Sex-ratio background. The reduced heterogeneity in esterase 5 is due either to its location near one of the Sex-ratio inversion breakpoints or that it is closely linked to a gene or genes responsible for the Sex-ratio meiotic drive system.

AB - This article presents a nucleotide sequence analysis of 500 bp determined in each of five X-linked genes, runt, sisterlessA, period, esterase 5, and Heat-shock protein 83, in 40 Drosophila pseudoobscura strains collected from two populations. Estimates of the neutral migration parameter for the five loci show that gene flow among D. pseudoobscura populations is sufficient to homogenize inversion frequencies across the range of the species. Nucleotide diversity at each locus fails to reject a neutral model of molecular evolution. The sample of 40 chromosomes included six Sex-ratio inversions, a series of three nonoverlapping inversions that are associated with a strong meiotic drive phenotype. The selection driven by the Sex-ratio meiotic drive element has not fixed variation across the X chromosome of D. pseudoobscura because, while significant linkage disequilibrium was observed within the sisterlessA, period, and esterase 5 genes, we did not find evidence for nonrandom association among loci. The Sex-ratio chromosome was estimated to be 25,000 years old based on the decomposition of linkage disequilibrium between esterase 5 and Heat-shock protein 83 or 1 million years old based on the net divergence of esterase 5 between Standard and Sex-ratio chromosomes. Genetic diversity was depressed within esterase 5 within Sex-ratio chromosomes, while the four other genes failed to show a reduction in heterozygosity in the Sex-ratio background. The reduced heterogeneity in esterase 5 is due either to its location near one of the Sex-ratio inversion breakpoints or that it is closely linked to a gene or genes responsible for the Sex-ratio meiotic drive system.

UR - http://www.scopus.com/inward/record.url?scp=0033832602&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033832602&partnerID=8YFLogxK

M3 - Article

C2 - 10978282

AN - SCOPUS:0033832602

VL - 156

SP - 155

EP - 172

JO - Genetics

JF - Genetics

SN - 0016-6731

IS - 1

ER -