Momentum maps and morita equivalence

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

We introduce quasi-symplectic groupoids and explain their relation with momentum map theories. This approach enables us to unify into a single framework various momentum map theories, including ordinary Hamiltonian G-spaces, Lu’s momentum maps of Poisson group actions, and the group-valued momentum maps of Alekseev-Malkin-Meinrenken. More precisely, we carry out the following program: (1) We define and study properties of quasi-symplectic groupoids. (2) We study the momentum map theory defined by a quasisymplectic groupoid γ ⇒ P. In particular, we study the reduction theory and prove that J−1(풪)/γ is a symplectic manifold for any Hamiltonian γ-space (X →J P, ωX) (even though ωX ∈ ω2(X) may be degenerate), where 풪 ⊂ P is a groupoid orbit. More generally, we prove that the intertwiner space (X1×P X¯ 2)/γ between two Hamiltonian γ-spaces X1 and X2 is a symplectic manifold (whenever it is a smooth manifold). (3)We study Morita equivalence of quasi-symplectic groupoids. In particular, we prove that Morita equivalent quasi-symplectic groupoids give rise to equivalent momentum map theories. Moreover the intertwiner space (X1 ×P X2)/γ depends only on the Morita equivalence class. As a result, we recover various wellknown results concerning equivalence of momentum maps including the Alekseev-Ginzburg-Weinstein linearization theorem and the Alekseev-Malkin-Meinrenken equivalence theorem between quasi-Hamiltonian spaces and Hamiltonian loop group spaces.

Original languageEnglish (US)
Pages (from-to)289-333
Number of pages45
JournalJournal of Differential Geometry
Volume67
Issue number2
DOIs
StatePublished - Jan 1 2004

Fingerprint

Momentum Map
Morita Equivalence
Groupoids
Groupoid
Symplectic Manifold
Equivalence Theorem
Loop Groups
G-space
P-space
Smooth Manifold
Group Action
Equivalence class
Linearization
Siméon Denis Poisson
Orbit
Equivalence
Theorem

All Science Journal Classification (ASJC) codes

  • Analysis
  • Algebra and Number Theory
  • Geometry and Topology

Cite this

@article{f7910fbdbe934e12878fc138fdb7f72c,
title = "Momentum maps and morita equivalence",
abstract = "We introduce quasi-symplectic groupoids and explain their relation with momentum map theories. This approach enables us to unify into a single framework various momentum map theories, including ordinary Hamiltonian G-spaces, Lu’s momentum maps of Poisson group actions, and the group-valued momentum maps of Alekseev-Malkin-Meinrenken. More precisely, we carry out the following program: (1) We define and study properties of quasi-symplectic groupoids. (2) We study the momentum map theory defined by a quasisymplectic groupoid γ ⇒ P. In particular, we study the reduction theory and prove that J−1(풪)/γ is a symplectic manifold for any Hamiltonian γ-space (X →J P, ωX) (even though ωX ∈ ω2(X) may be degenerate), where 풪 ⊂ P is a groupoid orbit. More generally, we prove that the intertwiner space (X1×P X¯ 2)/γ between two Hamiltonian γ-spaces X1 and X2 is a symplectic manifold (whenever it is a smooth manifold). (3)We study Morita equivalence of quasi-symplectic groupoids. In particular, we prove that Morita equivalent quasi-symplectic groupoids give rise to equivalent momentum map theories. Moreover the intertwiner space (X1 ×P X2)/γ depends only on the Morita equivalence class. As a result, we recover various wellknown results concerning equivalence of momentum maps including the Alekseev-Ginzburg-Weinstein linearization theorem and the Alekseev-Malkin-Meinrenken equivalence theorem between quasi-Hamiltonian spaces and Hamiltonian loop group spaces.",
author = "Ping Xu",
year = "2004",
month = "1",
day = "1",
doi = "10.4310/jdg/1102536203",
language = "English (US)",
volume = "67",
pages = "289--333",
journal = "Journal of Differential Geometry",
issn = "0022-040X",
publisher = "International Press of Boston, Inc.",
number = "2",

}

Momentum maps and morita equivalence. / Xu, Ping.

In: Journal of Differential Geometry, Vol. 67, No. 2, 01.01.2004, p. 289-333.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Momentum maps and morita equivalence

AU - Xu, Ping

PY - 2004/1/1

Y1 - 2004/1/1

N2 - We introduce quasi-symplectic groupoids and explain their relation with momentum map theories. This approach enables us to unify into a single framework various momentum map theories, including ordinary Hamiltonian G-spaces, Lu’s momentum maps of Poisson group actions, and the group-valued momentum maps of Alekseev-Malkin-Meinrenken. More precisely, we carry out the following program: (1) We define and study properties of quasi-symplectic groupoids. (2) We study the momentum map theory defined by a quasisymplectic groupoid γ ⇒ P. In particular, we study the reduction theory and prove that J−1(풪)/γ is a symplectic manifold for any Hamiltonian γ-space (X →J P, ωX) (even though ωX ∈ ω2(X) may be degenerate), where 풪 ⊂ P is a groupoid orbit. More generally, we prove that the intertwiner space (X1×P X¯ 2)/γ between two Hamiltonian γ-spaces X1 and X2 is a symplectic manifold (whenever it is a smooth manifold). (3)We study Morita equivalence of quasi-symplectic groupoids. In particular, we prove that Morita equivalent quasi-symplectic groupoids give rise to equivalent momentum map theories. Moreover the intertwiner space (X1 ×P X2)/γ depends only on the Morita equivalence class. As a result, we recover various wellknown results concerning equivalence of momentum maps including the Alekseev-Ginzburg-Weinstein linearization theorem and the Alekseev-Malkin-Meinrenken equivalence theorem between quasi-Hamiltonian spaces and Hamiltonian loop group spaces.

AB - We introduce quasi-symplectic groupoids and explain their relation with momentum map theories. This approach enables us to unify into a single framework various momentum map theories, including ordinary Hamiltonian G-spaces, Lu’s momentum maps of Poisson group actions, and the group-valued momentum maps of Alekseev-Malkin-Meinrenken. More precisely, we carry out the following program: (1) We define and study properties of quasi-symplectic groupoids. (2) We study the momentum map theory defined by a quasisymplectic groupoid γ ⇒ P. In particular, we study the reduction theory and prove that J−1(풪)/γ is a symplectic manifold for any Hamiltonian γ-space (X →J P, ωX) (even though ωX ∈ ω2(X) may be degenerate), where 풪 ⊂ P is a groupoid orbit. More generally, we prove that the intertwiner space (X1×P X¯ 2)/γ between two Hamiltonian γ-spaces X1 and X2 is a symplectic manifold (whenever it is a smooth manifold). (3)We study Morita equivalence of quasi-symplectic groupoids. In particular, we prove that Morita equivalent quasi-symplectic groupoids give rise to equivalent momentum map theories. Moreover the intertwiner space (X1 ×P X2)/γ depends only on the Morita equivalence class. As a result, we recover various wellknown results concerning equivalence of momentum maps including the Alekseev-Ginzburg-Weinstein linearization theorem and the Alekseev-Malkin-Meinrenken equivalence theorem between quasi-Hamiltonian spaces and Hamiltonian loop group spaces.

UR - http://www.scopus.com/inward/record.url?scp=28844461279&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=28844461279&partnerID=8YFLogxK

U2 - 10.4310/jdg/1102536203

DO - 10.4310/jdg/1102536203

M3 - Article

VL - 67

SP - 289

EP - 333

JO - Journal of Differential Geometry

JF - Journal of Differential Geometry

SN - 0022-040X

IS - 2

ER -