Monitoring depth of shallow atmospheric boundary layer to complement LiDAR measurements affected by partial overlap

Research output: Contribution to journalReview article

21 Citations (Scopus)

Abstract

There is compelling evidence that the incomplete laser beam receiver field-of-view overlap (i.e., partial overlap) of ground-based vertically-pointing aerosol LiDAR restricts the observational range for detecting aerosol layer boundaries to a certain height above the LiDAR. This height varies from one to few hundreds of meters, depending on the transceiver geometry. The range, or height of full overlap, is defined as the minimum distance at which the laser beam is completely imaged onto the detector through the field stop in the receiver optics. Thus, the LiDAR signal below the height of full overlap remains erroneous. In effect, it is not possible to derive the atmospheric boundary layer (ABL) top (zi) below the height of full overlap using lidar measurements alone. This problem makes determination of the nocturnal zi almost impossible, as the nocturnal zi is often lower than the minimum possible retrieved height due to incomplete overlap of lidar. Detailed studies of the nocturnal boundary layer or of variability of low zi would require changes in the LiDAR configuration such that a complete transceiver overlap could be achieved at a much lower height. Otherwise, improvements in the system configuration or deployment (e.g., scanning LiDAR) are needed. However, these improvements are challenging due to the instrument configuration and the need for Raman channel signal, eye-safe laser transmitter for scanning deployment, etc. This paper presents a brief review of some of the challenges and opportunities in overcoming the partial overlap of the LiDAR transceiver to determine zi below the height of full-overlap using complementary approaches to derive low zi. A comprehensive discussion focusing on four different techniques is presented. These are based on the combined (1) ceilometer and LiDAR; (2) tower-based trace gas (e.g., CO2) concentration profiles and LiDAR measurements; (3) 222Rn budget approach and LiDAR-derived results; and (4) encroachment model and LiDAR observations.

Original languageEnglish (US)
Pages (from-to)8468-8493
Number of pages26
JournalRemote Sensing
Volume6
Issue number9
DOIs
StatePublished - Jan 1 2014

Fingerprint

boundary layer
monitoring
laser
lidar
aerosol
nocturnal boundary layer
trace gas
field of view
geometry

All Science Journal Classification (ASJC) codes

  • Earth and Planetary Sciences(all)

Cite this

@article{e9a3ff229fd347679197792ef440ac10,
title = "Monitoring depth of shallow atmospheric boundary layer to complement LiDAR measurements affected by partial overlap",
abstract = "There is compelling evidence that the incomplete laser beam receiver field-of-view overlap (i.e., partial overlap) of ground-based vertically-pointing aerosol LiDAR restricts the observational range for detecting aerosol layer boundaries to a certain height above the LiDAR. This height varies from one to few hundreds of meters, depending on the transceiver geometry. The range, or height of full overlap, is defined as the minimum distance at which the laser beam is completely imaged onto the detector through the field stop in the receiver optics. Thus, the LiDAR signal below the height of full overlap remains erroneous. In effect, it is not possible to derive the atmospheric boundary layer (ABL) top (zi) below the height of full overlap using lidar measurements alone. This problem makes determination of the nocturnal zi almost impossible, as the nocturnal zi is often lower than the minimum possible retrieved height due to incomplete overlap of lidar. Detailed studies of the nocturnal boundary layer or of variability of low zi would require changes in the LiDAR configuration such that a complete transceiver overlap could be achieved at a much lower height. Otherwise, improvements in the system configuration or deployment (e.g., scanning LiDAR) are needed. However, these improvements are challenging due to the instrument configuration and the need for Raman channel signal, eye-safe laser transmitter for scanning deployment, etc. This paper presents a brief review of some of the challenges and opportunities in overcoming the partial overlap of the LiDAR transceiver to determine zi below the height of full-overlap using complementary approaches to derive low zi. A comprehensive discussion focusing on four different techniques is presented. These are based on the combined (1) ceilometer and LiDAR; (2) tower-based trace gas (e.g., CO2) concentration profiles and LiDAR measurements; (3) 222Rn budget approach and LiDAR-derived results; and (4) encroachment model and LiDAR observations.",
author = "Sandip Pal",
year = "2014",
month = "1",
day = "1",
doi = "10.3390/rs6098468",
language = "English (US)",
volume = "6",
pages = "8468--8493",
journal = "Remote Sensing",
issn = "2072-4292",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "9",

}

Monitoring depth of shallow atmospheric boundary layer to complement LiDAR measurements affected by partial overlap. / Pal, Sandip.

In: Remote Sensing, Vol. 6, No. 9, 01.01.2014, p. 8468-8493.

Research output: Contribution to journalReview article

TY - JOUR

T1 - Monitoring depth of shallow atmospheric boundary layer to complement LiDAR measurements affected by partial overlap

AU - Pal, Sandip

PY - 2014/1/1

Y1 - 2014/1/1

N2 - There is compelling evidence that the incomplete laser beam receiver field-of-view overlap (i.e., partial overlap) of ground-based vertically-pointing aerosol LiDAR restricts the observational range for detecting aerosol layer boundaries to a certain height above the LiDAR. This height varies from one to few hundreds of meters, depending on the transceiver geometry. The range, or height of full overlap, is defined as the minimum distance at which the laser beam is completely imaged onto the detector through the field stop in the receiver optics. Thus, the LiDAR signal below the height of full overlap remains erroneous. In effect, it is not possible to derive the atmospheric boundary layer (ABL) top (zi) below the height of full overlap using lidar measurements alone. This problem makes determination of the nocturnal zi almost impossible, as the nocturnal zi is often lower than the minimum possible retrieved height due to incomplete overlap of lidar. Detailed studies of the nocturnal boundary layer or of variability of low zi would require changes in the LiDAR configuration such that a complete transceiver overlap could be achieved at a much lower height. Otherwise, improvements in the system configuration or deployment (e.g., scanning LiDAR) are needed. However, these improvements are challenging due to the instrument configuration and the need for Raman channel signal, eye-safe laser transmitter for scanning deployment, etc. This paper presents a brief review of some of the challenges and opportunities in overcoming the partial overlap of the LiDAR transceiver to determine zi below the height of full-overlap using complementary approaches to derive low zi. A comprehensive discussion focusing on four different techniques is presented. These are based on the combined (1) ceilometer and LiDAR; (2) tower-based trace gas (e.g., CO2) concentration profiles and LiDAR measurements; (3) 222Rn budget approach and LiDAR-derived results; and (4) encroachment model and LiDAR observations.

AB - There is compelling evidence that the incomplete laser beam receiver field-of-view overlap (i.e., partial overlap) of ground-based vertically-pointing aerosol LiDAR restricts the observational range for detecting aerosol layer boundaries to a certain height above the LiDAR. This height varies from one to few hundreds of meters, depending on the transceiver geometry. The range, or height of full overlap, is defined as the minimum distance at which the laser beam is completely imaged onto the detector through the field stop in the receiver optics. Thus, the LiDAR signal below the height of full overlap remains erroneous. In effect, it is not possible to derive the atmospheric boundary layer (ABL) top (zi) below the height of full overlap using lidar measurements alone. This problem makes determination of the nocturnal zi almost impossible, as the nocturnal zi is often lower than the minimum possible retrieved height due to incomplete overlap of lidar. Detailed studies of the nocturnal boundary layer or of variability of low zi would require changes in the LiDAR configuration such that a complete transceiver overlap could be achieved at a much lower height. Otherwise, improvements in the system configuration or deployment (e.g., scanning LiDAR) are needed. However, these improvements are challenging due to the instrument configuration and the need for Raman channel signal, eye-safe laser transmitter for scanning deployment, etc. This paper presents a brief review of some of the challenges and opportunities in overcoming the partial overlap of the LiDAR transceiver to determine zi below the height of full-overlap using complementary approaches to derive low zi. A comprehensive discussion focusing on four different techniques is presented. These are based on the combined (1) ceilometer and LiDAR; (2) tower-based trace gas (e.g., CO2) concentration profiles and LiDAR measurements; (3) 222Rn budget approach and LiDAR-derived results; and (4) encroachment model and LiDAR observations.

UR - http://www.scopus.com/inward/record.url?scp=84907452439&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84907452439&partnerID=8YFLogxK

U2 - 10.3390/rs6098468

DO - 10.3390/rs6098468

M3 - Review article

VL - 6

SP - 8468

EP - 8493

JO - Remote Sensing

JF - Remote Sensing

SN - 2072-4292

IS - 9

ER -