Multi-objective control in human walking: Insight gained through simultaneous degradation of energetic and motor regulation systems

Kirsty A. McDonald, Joseph P. Cusumano, Peter Peeling, Jonas Rubenson

Research output: Contribution to journalArticle

Abstract

Minimization of metabolic energy is considered a fundamental principle of human locomotion, as demonstrated by an alignment between the preferred walking speed (PWS) and the speed incurring the lowest metabolic cost of transport. We aimed to (i) simultaneously disrupt metabolic cost and an alternate acute task requirement, namely speed error regulation, and (ii) assess whether the PWS could be explained on the basis of either optimality criterion in this new performance and energetic landscape. Healthy adults (N = 21) walked on an instrumented treadmill under normal conditions and, while negotiating a continuous gait perturbation, imposed leg-length asymmetry. Oxygen consumption, motion capture data and ground reaction forces were continuously recorded for each condition at speeds ranging from 0.6 to 1.8 m s−1, including the PWS. Both metabolic and speed regulation measures were disrupted by the perturbation (p < 0.05). Perturbed PWS selection did not exhibit energetic prioritization (although we find some indication of energy minimization after motor adaptation). Similarly, PWS selection did not support prioritization of speed error regulation, which was found to be independent of speed in both conditions. It appears that, during acute exposure to a mechanical gait perturbation of imposed leg-length asymmetry, humans minimize neither energetic cost nor speed regulation errors. Despite the abundance of evidence pointing to energy minimization during normal, steady-state gait, this may not extend acutely to perturbed gait. Understanding how the nervous system acutely controls gait perturbations requires further research that embraces multi-objective control paradigms.

Original languageEnglish (US)
Article number20190227
JournalJournal of the Royal Society Interface
Volume16
Issue number158
DOIs
StatePublished - Jan 1 2019

Fingerprint

Gait
Walking
Degradation
Costs and Cost Analysis
Leg
Negotiating
Locomotion
Oxygen Consumption
Nervous System
Walking Speed
Costs
Exercise equipment
Research
Neurology
Data acquisition
Oxygen

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering

Cite this

@article{d596aa76715649aa93680561a2afad15,
title = "Multi-objective control in human walking: Insight gained through simultaneous degradation of energetic and motor regulation systems",
abstract = "Minimization of metabolic energy is considered a fundamental principle of human locomotion, as demonstrated by an alignment between the preferred walking speed (PWS) and the speed incurring the lowest metabolic cost of transport. We aimed to (i) simultaneously disrupt metabolic cost and an alternate acute task requirement, namely speed error regulation, and (ii) assess whether the PWS could be explained on the basis of either optimality criterion in this new performance and energetic landscape. Healthy adults (N = 21) walked on an instrumented treadmill under normal conditions and, while negotiating a continuous gait perturbation, imposed leg-length asymmetry. Oxygen consumption, motion capture data and ground reaction forces were continuously recorded for each condition at speeds ranging from 0.6 to 1.8 m s−1, including the PWS. Both metabolic and speed regulation measures were disrupted by the perturbation (p < 0.05). Perturbed PWS selection did not exhibit energetic prioritization (although we find some indication of energy minimization after motor adaptation). Similarly, PWS selection did not support prioritization of speed error regulation, which was found to be independent of speed in both conditions. It appears that, during acute exposure to a mechanical gait perturbation of imposed leg-length asymmetry, humans minimize neither energetic cost nor speed regulation errors. Despite the abundance of evidence pointing to energy minimization during normal, steady-state gait, this may not extend acutely to perturbed gait. Understanding how the nervous system acutely controls gait perturbations requires further research that embraces multi-objective control paradigms.",
author = "McDonald, {Kirsty A.} and Cusumano, {Joseph P.} and Peter Peeling and Jonas Rubenson",
year = "2019",
month = "1",
day = "1",
doi = "10.1098/rsif.2019.0227",
language = "English (US)",
volume = "16",
journal = "Journal of the Royal Society Interface",
issn = "1742-5689",
publisher = "Royal Society of London",
number = "158",

}

TY - JOUR

T1 - Multi-objective control in human walking

T2 - Insight gained through simultaneous degradation of energetic and motor regulation systems

AU - McDonald, Kirsty A.

AU - Cusumano, Joseph P.

AU - Peeling, Peter

AU - Rubenson, Jonas

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Minimization of metabolic energy is considered a fundamental principle of human locomotion, as demonstrated by an alignment between the preferred walking speed (PWS) and the speed incurring the lowest metabolic cost of transport. We aimed to (i) simultaneously disrupt metabolic cost and an alternate acute task requirement, namely speed error regulation, and (ii) assess whether the PWS could be explained on the basis of either optimality criterion in this new performance and energetic landscape. Healthy adults (N = 21) walked on an instrumented treadmill under normal conditions and, while negotiating a continuous gait perturbation, imposed leg-length asymmetry. Oxygen consumption, motion capture data and ground reaction forces were continuously recorded for each condition at speeds ranging from 0.6 to 1.8 m s−1, including the PWS. Both metabolic and speed regulation measures were disrupted by the perturbation (p < 0.05). Perturbed PWS selection did not exhibit energetic prioritization (although we find some indication of energy minimization after motor adaptation). Similarly, PWS selection did not support prioritization of speed error regulation, which was found to be independent of speed in both conditions. It appears that, during acute exposure to a mechanical gait perturbation of imposed leg-length asymmetry, humans minimize neither energetic cost nor speed regulation errors. Despite the abundance of evidence pointing to energy minimization during normal, steady-state gait, this may not extend acutely to perturbed gait. Understanding how the nervous system acutely controls gait perturbations requires further research that embraces multi-objective control paradigms.

AB - Minimization of metabolic energy is considered a fundamental principle of human locomotion, as demonstrated by an alignment between the preferred walking speed (PWS) and the speed incurring the lowest metabolic cost of transport. We aimed to (i) simultaneously disrupt metabolic cost and an alternate acute task requirement, namely speed error regulation, and (ii) assess whether the PWS could be explained on the basis of either optimality criterion in this new performance and energetic landscape. Healthy adults (N = 21) walked on an instrumented treadmill under normal conditions and, while negotiating a continuous gait perturbation, imposed leg-length asymmetry. Oxygen consumption, motion capture data and ground reaction forces were continuously recorded for each condition at speeds ranging from 0.6 to 1.8 m s−1, including the PWS. Both metabolic and speed regulation measures were disrupted by the perturbation (p < 0.05). Perturbed PWS selection did not exhibit energetic prioritization (although we find some indication of energy minimization after motor adaptation). Similarly, PWS selection did not support prioritization of speed error regulation, which was found to be independent of speed in both conditions. It appears that, during acute exposure to a mechanical gait perturbation of imposed leg-length asymmetry, humans minimize neither energetic cost nor speed regulation errors. Despite the abundance of evidence pointing to energy minimization during normal, steady-state gait, this may not extend acutely to perturbed gait. Understanding how the nervous system acutely controls gait perturbations requires further research that embraces multi-objective control paradigms.

UR - http://www.scopus.com/inward/record.url?scp=85072052025&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072052025&partnerID=8YFLogxK

U2 - 10.1098/rsif.2019.0227

DO - 10.1098/rsif.2019.0227

M3 - Article

C2 - 31506049

AN - SCOPUS:85072052025

VL - 16

JO - Journal of the Royal Society Interface

JF - Journal of the Royal Society Interface

SN - 1742-5689

IS - 158

M1 - 20190227

ER -