Multiblock Pore-Scale Modeling and Upscaling of Reactive Transport: Application to Carbon Sequestration

Y. Mehmani, T. Sun, M. T. Balhoff, P. Eichhubl, S. Bryant

Research output: Contribution to journalArticlepeer-review

Abstract

In order to safely store CO 2 in depleted reservoirs and deep saline aquifers, a better understanding of the storage mechanisms of CO 2 is needed. Reaction of CO 2 with minerals to form precipitate in the subsurface helps to securely store CO 2 over geologic time periods, but a concern is the formation of localized channels through which CO 2 could travel at large, localized rates. Pore-scale network modeling is an attractive option for modeling and understanding this inherently pore-level process, but the relatively small domains of pore-scale network models may prevent accurate upscaling. Here, we develop a transient, single-phase, reactive pore-network model that includes reduction of throat conductivity as a result of precipitation. The novelty of this study is the implementation of a new mortar/transport method for coupling pore networks together at model interfaces that ensure continuity of pressures, species concentrations, and fluxes. The coupling allows for modeling at larger scales which may lead to more accurate upscaling approaches. Here, we couple pore-scale models with large variation in permeability and porosity which result in initial preferential pathways for flow. Our simulation results suggest that the preferential pathways close due to precipitation, but are not redirected at late times.

Original languageEnglish (US)
Pages (from-to)305-326
Number of pages22
JournalTransport in Porous Media
Volume95
Issue number2
DOIs
StatePublished - Oct 2012

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Multiblock Pore-Scale Modeling and Upscaling of Reactive Transport: Application to Carbon Sequestration'. Together they form a unique fingerprint.

Cite this