Multiple roles of core protein linker in hepatitis B virus replication

Kuancheng Liu, Laurie Luckenbaugh, Xiaojun Ning, Ji Xi, Jianming Hu

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Hepatitis B virus (HBV) core protein (HBc) contains an N-terminal domain (NTD, assembly domain) and a C-terminal domain (CTD), which are linked by a flexible linker region. HBc plays multiple essential roles in viral replication, including capsid assembly, packaging of the viral pregenomic RNA (pgRNA) into nucleocapsids, viral reverse transcription that converts pgRNA to the genomic DNA, and secretion of DNA-containing (complete) virions or genome-free (empty) virions. The HBc linker is generally assumed to act merely as a spacer between NTD and CTD but some results suggest that the linker may affect NTD assembly. To determine its role in viral replication, we have made a number of deletion and substitution mutants in the linker region, in either the presence or absence of CTD, and tested their abilities to support capsid assembly and viral replication in human cells. Our results indicate that the linker could indeed impede NTD assembly in the absence of CTD, which could be partially relieved by partial linker deletion. In contrast, when CTD was present, the linker deletions or substitutions did not affect capsid assembly. Deletion of the entire linker or its C-terminal part resulted in a partial defect in pgRNA packaging and severely impaired viral DNA synthesis. In contrast, deletion of the N-terminal part of the linker, or substitutions of the linker sequence, had little to no effect on RNA packaging or first-strand DNA synthesis. However, the N-terminal linker deletion and two linker substitution mutants were defective in the production of mature double-stranded viral DNA. Secretion of empty virions was blocked by all the linker deletions and substitutions tested. In particular, a conservative linker substitution that allowed mature viral DNA synthesis and secretion of complete virions severely impaired the secretion of empty virions, thus increasing the ratio of complete to empty virions that were secreted. Together, these results demonstrate that the HBc linker region plays critical and complex roles at multiple stages of HBV replication.

Original languageEnglish (US)
Article numbere1007085
JournalPLoS pathogens
Volume14
Issue number5
DOIs
StatePublished - May 2018

All Science Journal Classification (ASJC) codes

  • Parasitology
  • Microbiology
  • Immunology
  • Molecular Biology
  • Genetics
  • Virology

Fingerprint

Dive into the research topics of 'Multiple roles of core protein linker in hepatitis B virus replication'. Together they form a unique fingerprint.

Cite this