Multiscale autoregressive identification of neuro-electrophysiological systems.

Timothy P. Gilmour, Thyagarajan Subramanian

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Electrical signals between connected neural nuclei are difficult to model because of the complexity and high number of paths within the brain. Simple parametric models are therefore often used. A multiscale version of the autoregressive with exogenous input (MS-ARX) model has recently been developed which allows selection of the optimal amount of filtering and decimation depending on the signal-to-noise ratio and degree of predictability. In this paper we apply the MS-ARX model to cortical electroencephalograms and subthalamic local field potentials simultaneously recorded from anesthetized rodent brains. We demonstrate that the MS-ARX model produces better predictions than traditional ARX modeling. We also adapt the MS-ARX results to show differences in inter-nuclei predictability between normal rats and rats with 6OHDA-induced parkinsonism, indicating that this method may have broad applicability to other neuro-electrophysiological studies.

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Multiscale autoregressive identification of neuro-electrophysiological systems.'. Together they form a unique fingerprint.

Cite this