Multiscale Entropy and Its Implications to Critical Phenomena, Emergent Behaviors, and Information

Zi Kui Liu, Bing Li, Henry Lin

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Thermodynamics of critical phenomena in a system is well understood in terms of the divergence of molar quantities with respect to potentials. However, the prediction and the microscopic mechanisms of critical points and the associated property anomaly remain elusive. It is shown that while the critical point is typically considered to represent the limit of stability of a system when the system is approached from a homogenous state to the critical point, it can also be considered to represent the convergence of several homogeneous subsystems to become a macro-homogeneous system when the critical point is approached from a macro-heterogeneous system. Through the understanding of statistic characteristics of entropy in different scales, it is demonstrated that the statistic competition of key representative configurations results in the divergence of molar quantities when metastable configurations have higher entropy than the stable configuration. Furthermore, the connection between change of configurations and the change of information is discussed, which provides a quantitative framework to study complex, dissipative systems.

Original languageEnglish (US)
Pages (from-to)508-521
Number of pages14
JournalJournal of Phase Equilibria and Diffusion
Volume40
Issue number4
DOIs
StatePublished - Aug 15 2019

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Multiscale Entropy and Its Implications to Critical Phenomena, Emergent Behaviors, and Information'. Together they form a unique fingerprint.

Cite this