Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals

Research output: Contribution to journalArticle

83 Scopus citations

Abstract

Myocardial infarction (MI), also known as a heart attack, is a leading cause of mortality in the world. Spatial vectorcardiogram (VCG) signals are recorded on the body surface to monitor the underlying cardiac electrical activities in three orthogonal directions of the body, namely, frontal, transverse, and sagittal planes. The 3-D VCG vector loops provide a new way to study the cardiac dynamical behaviors, as opposed to the conventional time-delay reconstructed phase space from a single ECG trace. However, few, if any, previous approaches studied the relationships between cardiac disorders and recurrence patterns in VCG signals. This paper presents the recurrence quantification analysis (RQA) of VCG signals in multiple wavelet scales for the identification of cardiac disorders. The linear classification models using multiscale RQA features were shown to detect MI with an average sensitivity of 96.5 and an average specificity of 75 in the randomized classification experiments of PhysioNet Physikalisch-Technische Bundesanstalt database, which is comparable to the performance of human experts. This study is strongly indicative of potential automated MI classification algorithms for diagnostic and therapeutic purposes.

Original languageEnglish (US)
Article number5540281
Pages (from-to)339-347
Number of pages9
JournalIEEE Transactions on Biomedical Engineering
Volume58
Issue number2
DOIs
StatePublished - Feb 1 2011

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals'. Together they form a unique fingerprint.

  • Cite this