Multistep solution-mediated formation of AuCuSn2

Mechanistic insights for the guided design of intermetallic solid-state materials and complex multimetal nanocrystals

Brian M. Leonard, Raymond Edward Schaak

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

Understanding how solids form is a challenging task, and few strategies allow for the elucidation of reaction pathways that are useful for designing new solids. Here, we describe an unusual multistep reaction pathway that leads to the formation of AuCuSn2, a new ternary intermetallic compound that was discovered as nanocrystals using a low-temperature solution route. The formation of AuCuSn2 using a modified polyol process occurs through a multistep pathway that was elucidated by taking aliquots throughout the course of the reaction and studying the products using a variety of techniques. The reaction proceeds through four distinct steps: (a) formation of Au nanoparticles at or near room temperature, mediated by a galvanic reaction between Au 3+ and Sn2+ (forming Au0 and Sn4+, precipitated as SnO2 that forms a shell around the nanoparticles), (b) formation of NiAs-type AuSn nanoparticles, along with Cu and Sn, upon addition of NaBH4, (c) aggregation and thermal interdiffusion to form AuCuxSny alloy nanoparticles, and (d) nucleation of intermetallic AuCuSn2, which has an ordered NiAs-derived structure. The proposed mechanism was tested by starting the reaction with the AuSn intermediate. AuSn nanoparticles were synthesized separately and reacted with Cu and Sn nanoparticles, and ordered AuCuSn2 formed as expected. Elucidation of this reaction pathway has important implications for guiding the design of new intermetallic solids, as well as for controlling the synthesis of complex multimetal nanocrystals.

Original languageEnglish (US)
Pages (from-to)11475-11482
Number of pages8
JournalJournal of the American Chemical Society
Volume128
Issue number35
DOIs
StatePublished - Sep 6 2006

Fingerprint

Nanoparticles
Nanocrystals
Intermetallics
Polyols
Temperature
Nucleation
Agglomeration
Hot Temperature

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this

@article{c264792e3d1b425fb4fd7e2487c9c797,
title = "Multistep solution-mediated formation of AuCuSn2: Mechanistic insights for the guided design of intermetallic solid-state materials and complex multimetal nanocrystals",
abstract = "Understanding how solids form is a challenging task, and few strategies allow for the elucidation of reaction pathways that are useful for designing new solids. Here, we describe an unusual multistep reaction pathway that leads to the formation of AuCuSn2, a new ternary intermetallic compound that was discovered as nanocrystals using a low-temperature solution route. The formation of AuCuSn2 using a modified polyol process occurs through a multistep pathway that was elucidated by taking aliquots throughout the course of the reaction and studying the products using a variety of techniques. The reaction proceeds through four distinct steps: (a) formation of Au nanoparticles at or near room temperature, mediated by a galvanic reaction between Au 3+ and Sn2+ (forming Au0 and Sn4+, precipitated as SnO2 that forms a shell around the nanoparticles), (b) formation of NiAs-type AuSn nanoparticles, along with Cu and Sn, upon addition of NaBH4, (c) aggregation and thermal interdiffusion to form AuCuxSny alloy nanoparticles, and (d) nucleation of intermetallic AuCuSn2, which has an ordered NiAs-derived structure. The proposed mechanism was tested by starting the reaction with the AuSn intermediate. AuSn nanoparticles were synthesized separately and reacted with Cu and Sn nanoparticles, and ordered AuCuSn2 formed as expected. Elucidation of this reaction pathway has important implications for guiding the design of new intermetallic solids, as well as for controlling the synthesis of complex multimetal nanocrystals.",
author = "Leonard, {Brian M.} and Schaak, {Raymond Edward}",
year = "2006",
month = "9",
day = "6",
doi = "10.1021/ja062475h",
language = "English (US)",
volume = "128",
pages = "11475--11482",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "35",

}

TY - JOUR

T1 - Multistep solution-mediated formation of AuCuSn2

T2 - Mechanistic insights for the guided design of intermetallic solid-state materials and complex multimetal nanocrystals

AU - Leonard, Brian M.

AU - Schaak, Raymond Edward

PY - 2006/9/6

Y1 - 2006/9/6

N2 - Understanding how solids form is a challenging task, and few strategies allow for the elucidation of reaction pathways that are useful for designing new solids. Here, we describe an unusual multistep reaction pathway that leads to the formation of AuCuSn2, a new ternary intermetallic compound that was discovered as nanocrystals using a low-temperature solution route. The formation of AuCuSn2 using a modified polyol process occurs through a multistep pathway that was elucidated by taking aliquots throughout the course of the reaction and studying the products using a variety of techniques. The reaction proceeds through four distinct steps: (a) formation of Au nanoparticles at or near room temperature, mediated by a galvanic reaction between Au 3+ and Sn2+ (forming Au0 and Sn4+, precipitated as SnO2 that forms a shell around the nanoparticles), (b) formation of NiAs-type AuSn nanoparticles, along with Cu and Sn, upon addition of NaBH4, (c) aggregation and thermal interdiffusion to form AuCuxSny alloy nanoparticles, and (d) nucleation of intermetallic AuCuSn2, which has an ordered NiAs-derived structure. The proposed mechanism was tested by starting the reaction with the AuSn intermediate. AuSn nanoparticles were synthesized separately and reacted with Cu and Sn nanoparticles, and ordered AuCuSn2 formed as expected. Elucidation of this reaction pathway has important implications for guiding the design of new intermetallic solids, as well as for controlling the synthesis of complex multimetal nanocrystals.

AB - Understanding how solids form is a challenging task, and few strategies allow for the elucidation of reaction pathways that are useful for designing new solids. Here, we describe an unusual multistep reaction pathway that leads to the formation of AuCuSn2, a new ternary intermetallic compound that was discovered as nanocrystals using a low-temperature solution route. The formation of AuCuSn2 using a modified polyol process occurs through a multistep pathway that was elucidated by taking aliquots throughout the course of the reaction and studying the products using a variety of techniques. The reaction proceeds through four distinct steps: (a) formation of Au nanoparticles at or near room temperature, mediated by a galvanic reaction between Au 3+ and Sn2+ (forming Au0 and Sn4+, precipitated as SnO2 that forms a shell around the nanoparticles), (b) formation of NiAs-type AuSn nanoparticles, along with Cu and Sn, upon addition of NaBH4, (c) aggregation and thermal interdiffusion to form AuCuxSny alloy nanoparticles, and (d) nucleation of intermetallic AuCuSn2, which has an ordered NiAs-derived structure. The proposed mechanism was tested by starting the reaction with the AuSn intermediate. AuSn nanoparticles were synthesized separately and reacted with Cu and Sn nanoparticles, and ordered AuCuSn2 formed as expected. Elucidation of this reaction pathway has important implications for guiding the design of new intermetallic solids, as well as for controlling the synthesis of complex multimetal nanocrystals.

UR - http://www.scopus.com/inward/record.url?scp=33748416898&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33748416898&partnerID=8YFLogxK

U2 - 10.1021/ja062475h

DO - 10.1021/ja062475h

M3 - Article

VL - 128

SP - 11475

EP - 11482

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 35

ER -