N-doping and coalescence of carbon nanotubes: Synthesis and electronic properties

M. Terrones, P. M. Ajayan, F. Banhart, X. Blase, D. L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Rühle, T. Seeger, H. Terrones

Research output: Contribution to journalArticlepeer-review

373 Scopus citations

Abstract

Self-assembly pyrolytic routes to large arrays (< 2.5 cm 2) of aligned CNx nanotubes (15-80 nm OD and < 100 μm in length) are presented. The method involves the thermolysis of ferrocene/melamine mixtures (5 : 95) at 900-1000 °C in the presence of Ar. Electron energy loss spectroscopy (EELS) reveals that the N content varies from 2%-10%, and can be bonded to C in two different fashions (double-bonded and triple-bonded nitrogen). The electronic densities of states (DOS) of these CNx nanotubes, using scanning tunneling spectroscopy (STS), are presented. The doped nanotubes exhibit strong features in the conduction band close to the Fermi level (0.18 eV). Using tight-binding and ab initio calculations, we confirm that pyridine-like (double-bonded) N is responsible for introducing donor states close to the Fermi Level. These electron-rich structures are the first example of n-type nanotubes. Finally, it will be shown that moderate electron irradiation at 700-800 °C is capable of coalescing single-walled nanotubes (SWNTs). The process has also been studied using tight-binding molecular dynamics (TBMD). Vacancies induce the coalescence via a zipper-like mechanism, which has also been observed experimentally. These vacancies trigger the organization of atoms on the tube lattices within adjacent tubes. These results pave the way to the fabrication of nanotube heterojunctions, robust composites, contacts, nanocircuits and strong 3D composites using i N-doped tubes as well as SWNTs.

Original languageEnglish (US)
Pages (from-to)355-361
Number of pages7
JournalApplied Physics A: Materials Science and Processing
Volume74
Issue number3
DOIs
StatePublished - Mar 2002

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)

Fingerprint Dive into the research topics of 'N-doping and coalescence of carbon nanotubes: Synthesis and electronic properties'. Together they form a unique fingerprint.

Cite this