Abstract
To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a "beacon transmitter" which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.
Original language | English (US) |
---|---|
Article number | P01018 |
Journal | Journal of Instrumentation |
Volume | 11 |
Issue number | 1 |
DOIs | |
State | Published - Jan 29 2016 |
All Science Journal Classification (ASJC) codes
- Instrumentation
- Mathematical Physics
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers. / Aab, A.; Abreu, P.; Aglietta, M. et al.
In: Journal of Instrumentation, Vol. 11, No. 1, P01018, 29.01.2016.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers
AU - Aab, A.
AU - Abreu, P.
AU - Aglietta, M.
AU - Ahn, E. J.
AU - Al Samarai, I.
AU - Albuquerque, I. F.M.
AU - Allekotte, I.
AU - Allison, P.
AU - Almela, A.
AU - Alvarez Castillo, J.
AU - Alvarez-Muñiz, J.
AU - Alves Batista, R.
AU - Ambrosio, M.
AU - Aminaei, A.
AU - Anastasi, G. A.
AU - Anchordoqui, L.
AU - Andringa, S.
AU - Aramo, C.
AU - Arqueros, F.
AU - Arsene, N.
AU - Asorey, H.
AU - Assis, P.
AU - Aublin, J.
AU - Avila, G.
AU - Awal, N.
AU - Badescu, A. M.
AU - Baus, C.
AU - Beatty, J. J.
AU - Becker, K. H.
AU - Bellido, J. A.
AU - Berat, C.
AU - Bertaina, M. E.
AU - Bertou, X.
AU - Biermann, P. L.
AU - Billoir, P.
AU - Blaess, S. G.
AU - Blanco, A.
AU - Blanco, M.
AU - Blazek, J.
AU - Bleve, C.
AU - Blümer, H.
AU - Bohácová, M.
AU - Boncioli, D.
AU - Bonifazi, C.
AU - Borodai, N.
AU - Brack, J.
AU - Brancus, I.
AU - Bretz, T.
AU - Bridgeman, A.
AU - Brogueira, P.
AU - Buchholz, P.
AU - Bueno, A.
AU - Buitink, S.
AU - Buscemi, M.
AU - Caballero-Mora, K. S.
AU - Caccianiga, B.
AU - Caccianiga, L.
AU - Candusso, M.
AU - Caramete, L.
AU - Caruso, R.
AU - Castellina, A.
AU - Cataldi, G.
AU - Cazon, L.
AU - Cester, R.
AU - Chavez, A. G.
AU - Chiavassa, A.
AU - Chinellato, J. A.
AU - Chudoba, J.
AU - Cilmo, M.
AU - Clay, R. W.
AU - Cocciolo, G.
AU - Colalillo, R.
AU - Coleman, A.
AU - Collica, L.
AU - Coluccia, M. R.
AU - Conceição, R.
AU - Contreras, F.
AU - Cooper, M. J.
AU - Cordier, A.
AU - Coutu, S.
AU - Covault, C. E.
AU - Cronin, J.
AU - Dallier, R.
AU - Daniel, B.
AU - Dasso, S.
AU - Daumiller, K.
AU - Dawson, B. R.
AU - De Almeida, R. M.
AU - De Jong, S. J.
AU - De Mauro, G.
AU - De Mello Neto, J. R.T.
AU - De Mitri, I.
AU - De Oliveira, J.
AU - De Souza, V.
AU - Del Peral, L.
AU - Deligny, O.
AU - Dhital, N.
AU - Di Giulio, C.
AU - Di Matteo, A.
AU - Diaz, J. C.
AU - Díaz Castro, M. L.
AU - Diogo, F.
AU - Dobrigkeit, C.
AU - Docters, W.
AU - D'Olivo, J. C.
AU - Dorofeev, A.
AU - Dorosti Hasankiadeh, Q.
AU - Dos Anjos, R. C.
AU - Dova, M. T.
AU - Ebr, J.
AU - Engel, R.
AU - Erdmann, M.
AU - Erfani, M.
AU - Escobar, C. O.
AU - Eser, J.
AU - Espadanal, J.
AU - Etchegoyen, A.
AU - Falcke, H.
AU - Fang, K.
AU - Farrar, G.
AU - Fauth, A. C.
AU - Fazzini, N.
AU - Ferguson, A. P.
AU - Fick, B.
AU - Figueira, J. M.
AU - Filevich, A.
AU - Filipcic, A.
AU - Fratu, O.
AU - Freire, M. M.
AU - Fujii, T.
AU - García, B.
AU - García-Gámez, D.
AU - Garcia-Pinto, D.
AU - Gate, F.
AU - Gemmeke, H.
AU - Gherghel-Lascu, A.
AU - Ghia, P. L.
AU - Giaccari, U.
AU - Giammarchi, M.
AU - Giller, M.
AU - Glas, D.
AU - Glaser, C.
AU - Glass, H.
AU - Golup, G.
AU - Gómez Berisso, M.
AU - Gómez Vitale, P. F.
AU - González, N.
AU - Gookin, B.
AU - Gordon, J.
AU - Gorgi, A.
AU - Gorham, P.
AU - Gouffon, P.
AU - Griffith, N.
AU - Grillo, A. F.
AU - Grubb, T. D.
AU - Guarino, F.
AU - Guedes, G. P.
AU - Hampel, M. R.
AU - Hansen, P.
AU - Harari, D.
AU - Harrison, T. A.
AU - Hartmann, S.
AU - Harton, J. L.
AU - Haungs, A.
AU - Hebbeker, T.
AU - Heck, D.
AU - Heimann, P.
AU - Hervé, A. E.
AU - Hill, G. C.
AU - Hojvat, C.
AU - Hollon, N.
AU - Holt, E.
AU - Homola, P.
AU - Hörandel, J. R.
AU - Horvath, P.
AU - Hrabovský, M.
AU - Huber, D.
AU - Huege, T.
AU - Insolia, A.
AU - Isar, P. G.
AU - Jandt, I.
AU - Jansen, S.
AU - Jarne, C.
AU - Johnsen, J. A.
AU - Josebachuili, M.
AU - Kääpä, A.
AU - Kambeitz, O.
AU - Kampert, K. H.
AU - Kasper, P.
AU - Katkov, I.
AU - Keilhauer, B.
AU - Kemp, E.
AU - Kieckhafer, R. M.
AU - Klages, H. O.
AU - Kleifges, M.
AU - Kleinfeller, J.
AU - Krause, R.
AU - Krohm, N.
AU - Kuempel, D.
AU - Kukec Mezek, G.
AU - Kunka, N.
AU - Kuotb Awad, A. W.
AU - LaHurd, D.
AU - Lang, A.
AU - Latronico, L.
AU - Lauer, R.
AU - Lauscher, M.
AU - Lautridou, P.
AU - Le Coz, S.
AU - Lebrun, D.
AU - Lebrun, P.
AU - Leigui De Oliveira, M. A.
AU - Letessier-Selvon, A.
AU - Lhenry-Yvon, I.
AU - Link, K.
AU - Lopes, L.
AU - López, R.
AU - López Casado, A.
AU - Louedec, K.
AU - Lucero, A.
AU - Malacari, M.
AU - Mallamaci, M.
AU - Maller, J.
AU - Mandat, D.
AU - Mantsch, P.
AU - Mariazzi, A. G.
AU - Marin, V.
AU - Maris, I. C.
AU - Marsella, G.
AU - Martello, D.
AU - Martinez, H.
AU - Martínez Bravo, O.
AU - Martraire, D.
AU - Masías Meza, J. J.
AU - Mathes, H. J.
AU - Mathys, S.
AU - Matthews, J.
AU - J. Matthews, J. A.
AU - Matthiae, G.
AU - Maurizio, D.
AU - Mayotte, E.
AU - Mazur, P. O.
AU - Medina, C.
AU - Medina-Tanco, G.
AU - Meissner, R.
AU - B. Mello, V. B.
AU - Melo, D.
AU - Menshikov, A.
AU - Messina, S.
AU - Micheletti, M. I.
AU - Middendorf, L.
AU - Minaya, I. A.
AU - Miramonti, L.
AU - Mitrica, B.
AU - Molina-Bueno, L.
AU - Mollerach, S.
AU - Montanet, F.
AU - Morello, C.
AU - Mostafá, M.
AU - Moura, C. A.
AU - Müller, G.
AU - Muller, M. A.
AU - Müller, S.
AU - Navas, S.
AU - Necesal, P.
AU - Nellen, L.
AU - Nelles, A.
AU - Neuser, J.
AU - Nguyen, P. H.
AU - Niculescu-Oglinzanu, M.
AU - Niechciol, M.
AU - Niemietz, L.
AU - Niggemann, T.
AU - Nitz, D.
AU - Nosek, D.
AU - Novotny, V.
AU - Nožka, L.
AU - Núñez, L. A.
AU - Ochilo, L.
AU - Oikonomou, F.
AU - Olinto, A.
AU - Pacheco, N.
AU - Pakk Selmi-Dei, D.
AU - Palatka, M.
AU - Pallotta, J.
AU - Papenbreer, P.
AU - Parente, G.
AU - Parra, A.
AU - Paul, T.
AU - Pech, M.
AU - Pękala, J.
AU - Pelayo, R.
AU - Pepe, I. M.
AU - Perrone, L.
AU - Petermann, E.
AU - Peters, C.
AU - Petrera, S.
AU - Petrov, Y.
AU - Phuntsok, J.
AU - Piegaia, R.
AU - Pierog, T.
AU - Pieroni, P.
AU - Pimenta, M.
AU - Pirronello, V.
AU - Platino, M.
AU - Plum, M.
AU - Porcelli, A.
AU - Porowski, C.
AU - Prado, R. R.
AU - Privitera, P.
AU - Prouza, M.
AU - Quel, E. J.
AU - Querchfeld, S.
AU - Quinn, S.
AU - Rautenberg, J.
AU - Ravel, O.
AU - Ravignani, D.
AU - Reinert, D.
AU - Revenu, B.
AU - Ridky, J.
AU - Risse, M.
AU - Ristori, P.
AU - Rizi, V.
AU - Rodrigues De Carvalho, W.
AU - Rodriguez Rojo, J.
AU - Rodríguez-Frías, M. D.
AU - Rogozin, D.
AU - Rosado, J.
AU - Roth, M.
AU - Roulet, E.
AU - Rovero, A. C.
AU - Saffi, S. J.
AU - Saftoiu, A.
AU - Salazar, H.
AU - Saleh, A.
AU - Salesa Greus, F.
AU - Salina, G.
AU - Sanabria Gomez, J. D.
AU - Sánchez, F.
AU - Sanchez-Lucas, P.
AU - Santos, E. M.
AU - Santos, E.
AU - Sarazin, F.
AU - Sarkar, B.
AU - Sarmento, R.
AU - Sarmiento-Cano, C.
AU - Sato, R.
AU - Scarso, C.
AU - Schauer, M.
AU - Scherini, V.
AU - Schieler, H.
AU - Schmidt, D.
AU - Scholten, O.
AU - Schoorlemmer, H.
AU - Schovánek, P.
AU - Schröder, F. G.
AU - Schulz, A.
AU - Schulz, J.
AU - Schumacher, J.
AU - Sciutto, S. J.
AU - Segreto, A.
AU - Settimo, M.
AU - Shadkam, A.
AU - Shellard, R. C.
AU - Sigl, G.
AU - Sima, O.
AU - Smialkowski, A.
AU - Šmída, R.
AU - Snow, G. R.
AU - Sommers, P.
AU - Sonntag, S.
AU - Sorokin, J.
AU - Squartini, R.
AU - Srivastava, Y. N.
AU - Stanca, D.
AU - Stanic, S.
AU - Stapleton, J.
AU - Stasielak, J.
AU - Stephan, M.
AU - Stutz, A.
AU - Suarez, F.
AU - Suarez Durán, M.
AU - Suomijärvi, T.
AU - Supanitsky, A. D.
AU - Sutherland, M. S.
AU - Swain, J.
AU - Szadkowski, Z.
AU - Taborda, O. A.
AU - Tapia, A.
AU - Tepe, A.
AU - Theodoro, V. M.
AU - Timmermans, C.
AU - Todero Peixoto, C. J.
AU - Toma, G.
AU - Tomankova, L.
AU - Tomé, B.
AU - Tonachini, A.
AU - Torralba Elipe, G.
AU - Torres Machado, D.
AU - Travnicek, P.
AU - Trini, M.
AU - Ulrich, R.
AU - Unger, M.
AU - Urban, M.
AU - Valdés Galicia, J. F.
AU - Valiño, I.
AU - Valore, L.
AU - Van Aar, G.
AU - Van Bodegom, P.
AU - Van Den Berg, A. M.
AU - Van Velzen, S.
AU - Van Vliet, A.
AU - Varela, E.
AU - Vargas Cárdenas, B.
AU - Varner, G.
AU - Vasquez, R.
AU - Vázquez, J. R.
AU - Vázquez, R. A.
AU - Veberic, D.
AU - Verzi, V.
AU - Vicha, J.
AU - Videla, M.
AU - Villaseñor, L.
AU - Vlcek, B.
AU - Vorobiov, S.
AU - Wahlberg, H.
AU - Wainberg, O.
AU - Walz, D.
AU - Watson, A. A.
AU - Weber, M.
AU - Weidenhaupt, K.
AU - Weindl, A.
AU - Werner, F.
AU - Widom, A.
AU - Wiencke, L.
AU - Wilczynski, H.
AU - Winchen, T.
AU - Wittkowski, D.
AU - Wundheiler, B.
AU - Wykes, S.
AU - Yang, L.
AU - Yapici, T.
AU - Yushkov, A.
AU - Zas, E.
AU - Zavrtanik, D.
AU - Zavrtanik, M.
AU - Zepeda, A.
AU - Zimmermann, B.
AU - Ziolkowski, M.
AU - Zuccarello, F.
N1 - Funding Information: We would like to thank several people who supported this work directly or by their involvement in preparatory studies: H. Bolz, H. Bozdog, D. Huber, M. Konzack, R. Rink, F. Leven. We are also grateful to the anonymous referee for useful suggestions and comments. The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Comisión Nacional de Energía Atómica, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las LenÃas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council (DP150101622); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundaçã:o de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), São Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6 and No. 1999/05404-3, Ministério de Ciência e Tecnologia (MCT), Brazil; Grant No. MSMT-CR LG13007, No. 7AMB14AR005, and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Régional Ile-de-France, Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences de l’Univers (SDU-INSU/CNRS), Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63, within the Investissements d’Avenir Programme Grant No. ANR-11-IDEX-0004-02, France; Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden- Württemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium für Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium für Wissenschaft, Forschung und Kunst, Baden-Württemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur enWetenschap, Nederlandse Organisatie voorWetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 - 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundaçã:o para a Ciência e a Tecnologia (COMPETE), Portugal; RomanianAuthority for ScientificResearchANCS, CNDI-UEFISCDI partnership projects Grants No. 20/2012 and No. 194/2012, Grants No. 1/ASPERA2/2012 ERA-NET, No. PN-II-RU-PD-2011-3-0145-17 and No. PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme Space Technology and Advanced Research (STAR), Grant No. 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educación y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. Publisher Copyright: © 2016 IOP Publishing Ltd and Sissa Medialab srl.
PY - 2016/1/29
Y1 - 2016/1/29
N2 - To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a "beacon transmitter" which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.
AB - To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a "beacon transmitter" which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.
UR - http://www.scopus.com/inward/record.url?scp=84957933092&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84957933092&partnerID=8YFLogxK
U2 - 10.1088/1748-0221/11/01/P01018
DO - 10.1088/1748-0221/11/01/P01018
M3 - Article
AN - SCOPUS:84957933092
SN - 1748-0221
VL - 11
JO - Journal of Instrumentation
JF - Journal of Instrumentation
IS - 1
M1 - P01018
ER -