Needle insertion force model for haptic simulation

Adam Gordon, Andrew C. Barnett, Inki Kim, Jason Zachary Moore

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Percutaneous medical procedures rely upon clinicians performing precise needle insertion in soft tissue. The utility of haptic simulation systems in training clinicians for these procedures is highly dependent upon the ability to render accurate insertion force feedback. This paper presents a piecewise mathematical model for insertion force that does not require tissue material properties, detailed mechanical approximations, or complex computations. With manipulation of model parameters, a wide variety of insertion tasks and clinical scenarios can be modeled. Through needle insertion experiments and parameter estimation, this model was demonstrated to replicate the insertion forces associated with a variety of needle and tissue types. In 11 of 12 needle and tissue combinations tested, the model replicated the insertion force with an average absolute mean error of less than 0.065 N.

Original languageEnglish (US)
Title of host publicationMaterials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791856833
DOIs
StatePublished - Jan 1 2015
EventASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015 - Charlotte, United States
Duration: Jun 8 2015Jun 12 2015

Publication series

NameASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015
Volume2

Other

OtherASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015
CountryUnited States
CityCharlotte
Period6/8/156/12/15

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering

Cite this

Gordon, A., Barnett, A. C., Kim, I., & Moore, J. Z. (2015). Needle insertion force model for haptic simulation. In Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing (ASME 2015 International Manufacturing Science and Engineering Conference, MSEC 2015; Vol. 2). American Society of Mechanical Engineers. https://doi.org/10.1115/MSEC20159352