Negative bias instability in 4H-SiC MOSFETS: Evidence for structural changes in the SiC

M. A. Anders, Patrick M. Lenahan, A. J. Lelis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

The negative bias temperature instability (NBTI) has been investigated for quite some time in Si based MOSFETs. In these MOSFETs, the response has been interpreted in several ways, primarily in terms of the reaction diffusion model and newer model based on the occupation of a near interface oxide hole trap triggering the generation of silicon dielectric interface traps. SiC based MOSFETs have enormous promise for high power and high temperature applications. Consequently, device performance at elevated temperatures of these devices is a topic of great current interest. We have begun a magnetic resonance based study of NBTI in 4H-SiC devices and find, among other things, that elevated temperature and negative gate bias generates structural changes (associated with electrically active defects) within the SiC. These observations strongly suggest that SiC NBTI is significantly different and likely more complex than the NBTI processes taking place in silicon based devices. However, other observations suggest that one aspect of NBTI, the occupation of near-interfacial oxide hole traps called E' centers, takes place in both systems.

Original languageEnglish (US)
Title of host publication2015 IEEE International Reliability Physics Symposium, IRPS 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3E41-3E45
ISBN (Electronic)9781467373623
DOIs
StatePublished - May 26 2015
EventIEEE International Reliability Physics Symposium, IRPS 2015 - Monterey, United States
Duration: Apr 19 2015Apr 23 2015

Publication series

NameIEEE International Reliability Physics Symposium Proceedings
Volume2015-May
ISSN (Print)1541-7026

Other

OtherIEEE International Reliability Physics Symposium, IRPS 2015
CountryUnited States
CityMonterey
Period4/19/154/23/15

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Negative bias instability in 4H-SiC MOSFETS: Evidence for structural changes in the SiC'. Together they form a unique fingerprint.

Cite this