Neural computations underlying social risk sensitivity

Nina Lauharatanahirun, George I. Christopoulos, Brooks King-Casas

Research output: Contribution to journalArticlepeer-review

Abstract

Under standard models of expected utility, preferences over stochastic events are assumed to be independent of the source of uncertainty. Thus, in decision-making, an agent should exhibit consistent preferences, regardless of whether the uncertainty derives from the unpredictability of a random process or the unpredictability of a social partner. However, when a social partner is the source of uncertainty, social preferences can influence decisions over and above pure risk attitudes (RA). Here, we compared risk-related hemodynamic activity and individual preferences for two sets of options that differ only in the social or non-social nature of the risk. Risk preferences in social and non-social contexts were systematically related to neural activity during decision and outcome phases of each choice. Individuals who were more risk averse in the social context exhibited decreased risk-related activity in the amygdala during non-social decisions, while individuals who were more risk averse in the non-social context exhibited the opposite pattern. Differential risk preferences were similarly associated with hemodynamic activity in ventral striatum at the outcome of these decisions. These findings suggest that social preferences, including aversion to betrayal or exploitation by social partners, may be associated with variability in the response of these subcortical regions to social risk.

Original languageEnglish (US)
JournalFrontiers in Human Neuroscience
Issue numberAUGUST
DOIs
StatePublished - Aug 2 2012

All Science Journal Classification (ASJC) codes

  • Neuropsychology and Physiological Psychology
  • Neurology
  • Psychiatry and Mental health
  • Biological Psychiatry
  • Behavioral Neuroscience

Fingerprint Dive into the research topics of 'Neural computations underlying social risk sensitivity'. Together they form a unique fingerprint.

Cite this