Neural control of muscle blood flow during exercise

Gail D. Thomas, Steven S. Segal

Research output: Contribution to journalReview articlepeer-review

164 Scopus citations

Abstract

Activation of skeletal muscle fibers by somatic nerves results in vasodilation and functional hyperemia. Sympathetic nerve activity is integral to vasoconstriction and the maintenance of arterial blood pressure. Thus the interaction between somatic and sympathetic neuroeffector pathways underlies blood flow control to skeletal muscle during exercise. Muscle blood flow increases in proportion to the intensity of activity despite concomitant increases in sympathetic neural discharge to the active muscles, indicating a reduced responsiveness to sympathetic activation. However, increased sympathetic nerve activity can restrict blood flow to active muscles to maintain arterial blood pressure. In this brief review, we highlight recent advances in our understanding of the neural control of the circulation in exercising muscle by focusing on two main topics: 1) the role of motor unit recruitment and muscle fiber activation in generating vasodilator signals and 2) the nature of interaction between sympathetic vasoconstriction and functional vasodilation that occurs throughout the resistance network. Understanding how these control systems interact to govern muscle blood flow during exercise leads to a clear set of specific aims for future research.

Original languageEnglish (US)
Pages (from-to)731-738
Number of pages8
JournalJournal of applied physiology
Volume97
Issue number2
DOIs
StatePublished - Aug 2004

All Science Journal Classification (ASJC) codes

  • Physiology
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Neural control of muscle blood flow during exercise'. Together they form a unique fingerprint.

Cite this