Neuro-simulation analysis of pressure maintenance operations in gas condensate reservoirs

Luis Ayala H., Turgay Ertekin

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

The study of near-critical gas reservoirs, or gas condensate reservoirs, has been a fertile area of research in the last decades, especially because of their singular depletion behavior which cast them apart from other types of oil and gas reservoirs. Typically, exploiting a gas condensate reservoir without pressure maintenance generates high surface gas recoveries with relatively low condensate recoveries. Appearance of a hydrocarbon liquid phase upon isothermal depletion is typical of these systems, and major concerns arise related to the loss of this valuable fraction of heavier hydrocarbons and the associated impairment in gas production around the wellbore region. To provide reservoir pressure support, the injection of either surface gas or other gases such as nitrogen is common for pressure maintenance purposes. Pressure maintenance is economically justified by keeping the reservoir pressure above dew point or revaporizing any valuable condensate that might have formed. The convenience of the gas injection operation for a specific gas condensate reservoir is strongly tied to the flow characteristics of the reservoir and phase behavior of the fluid. Highly sophisticated and expensive compositional simulations are usually employed in order to estimate reservoir performance under gas cycling operations. In this study, we propose the implementation of artificial neural network (ANN) technology towards the establishment of an expert system capable of learning the existing vaguely understood relationships between the input parameters and output response of compositional simulation of gas cycling operations in gas condensate reservoirs. Parametric studies are conducted which identify the most influential reservoir and fluid characteristics in the establishment of optimum production protocols for the implementation of the pressure maintenance operation. As a result, a powerful tool for the implementation of pressure maintenance operations in gas condensate reservoirs is developed. This tool is capable of assisting in designing an optimized exploitation scheme for a particular reservoir under consideration for development. Fast, reliable, and inexpensive results are obtained using the proposed approach while capturing the important flow and thermodynamic characteristics inherent to such systems without resorting to detailed and expensive compositional simulation studies.

Original languageEnglish (US)
Pages (from-to)207-226
Number of pages20
JournalJournal of Petroleum Science and Engineering
Volume58
Issue number1-2
DOIs
StatePublished - Aug 1 2007

All Science Journal Classification (ASJC) codes

  • Fuel Technology
  • Geotechnical Engineering and Engineering Geology

Fingerprint Dive into the research topics of 'Neuro-simulation analysis of pressure maintenance operations in gas condensate reservoirs'. Together they form a unique fingerprint.

Cite this