Ernazar Abdikamalov, Christian D. Ott, David Radice, Luke F. Roberts, Roland Haas, Christian Reisswig, Philipp Mösta, Hannah Klion, Erik Schnetter

Research output: Contribution to journalArticle

45 Scopus citations


We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 Mo progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch & Connor. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ-1 in the "inertial range," while theory and local simulations argue for E(ℓ) ∝ ℓ-5/3. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a "bottleneck" that prevents an efficient turbulent cascade.

Original languageEnglish (US)
Article number70
JournalAstrophysical Journal
Issue number1
StatePublished - Jul 20 2015


All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

Abdikamalov, E., Ott, C. D., Radice, D., Roberts, L. F., Haas, R., Reisswig, C., Mösta, P., Klion, H., & Schnetter, E. (2015). NEUTRINO-DRIVEN TURBULENT CONVECTION and STANDING ACCRETION SHOCK INSTABILITY in THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE. Astrophysical Journal, 808(1), [70].