Neutronic performance of uranium nitride composite fuels in a PWR

Nicholas Brown, Arnold Aronson, Michael Todosow, Ryan Brito, Kenneth J. McClellan

    Research output: Contribution to journalArticle

    37 Citations (Scopus)

    Abstract

    Uranium mononitride (UN) based composite nuclear fuels may have potential benefits in light water reactor applications, including enhanced thermal conductivity and increased fuel density. However, uranium nitride reacts chemically when in contact with water, especially at high temperatures. To overcome this challenge, several advanced composite fuels have been proposed with uranium nitride as a primary phase. The primary nitride phase is "shielded" from water by a secondary phase, which would allow the potential benefits of nitride fuels to be realized. This work is an operational assessment of four different candidate composite materials. We considered uranium dioxide (UO2) and UN base cases and compared them with the candidate composite UN-based fuels. The comparison was performed for nominal conditions in a reference PWR with Zr-based cladding. We assessed the impact of UN porosity on the operational performance, because this is a key sensitivity parameter. As composite fuels, we studied UN/U3Si5, UN/U3Si2, UN/UB4, and UN/ZrO2. In the case of UB4, the boron content is 100% enriched in 11B. The proposed zirconium dioxide (ZrO2) phase is cubic and yttria-stabilized. In all cases UN is the primary phase, with small fractions of U3Si5, U3Si5, UB 4, or ZrO2 as a secondary phase. In this analysis we showed that two baseline nitride cases at different fractions of theoretical density (0.8 and 0.95) generally bound the neutronic performance of the candidate composite fuels. Performance was comparable with UO2. One notable difference observed was longer cycle lengths with the composite fuels (due to increased fuel loading). Another significant finding is that the nitride composites exhibited a harder neutron spectrum, which decreased the reactivity worth of burnable absorbers, soluble boron, and control rod materials relative to the UO2 case. In general, the full-core reactivity coefficients for the nitride and nitride composite fuels were within the design limits for the reference PWR and UO2-Zr fuel system. It is noted that the limits for the proposed advanced composites will likely be different than the reference UO2 fuel. The baseline UN and UN/ZrO2 cases, both with relatively high porosity in the nitride phase (20%), exhibited the strongest similarity to the reference UO2 case.

    Original languageEnglish (US)
    Pages (from-to)393-407
    Number of pages15
    JournalNuclear Engineering and Design
    Volume275
    DOIs
    StatePublished - Jan 1 2014

    Fingerprint

    Uranium
    Nitrides
    uranium
    nitrides
    composite materials
    Composite materials
    Boron
    dioxides
    boron
    Porosity
    reactivity
    porosity
    fuel systems
    Uranium dioxide
    control rods
    light water reactors
    Control rods
    Fuel systems
    Light water reactors
    Yttrium oxide

    All Science Journal Classification (ASJC) codes

    • Nuclear and High Energy Physics
    • Nuclear Energy and Engineering
    • Materials Science(all)
    • Safety, Risk, Reliability and Quality
    • Waste Management and Disposal
    • Mechanical Engineering

    Cite this

    Brown, Nicholas ; Aronson, Arnold ; Todosow, Michael ; Brito, Ryan ; McClellan, Kenneth J. / Neutronic performance of uranium nitride composite fuels in a PWR. In: Nuclear Engineering and Design. 2014 ; Vol. 275. pp. 393-407.
    @article{63e6a7a9d03440858fa9850b85742233,
    title = "Neutronic performance of uranium nitride composite fuels in a PWR",
    abstract = "Uranium mononitride (UN) based composite nuclear fuels may have potential benefits in light water reactor applications, including enhanced thermal conductivity and increased fuel density. However, uranium nitride reacts chemically when in contact with water, especially at high temperatures. To overcome this challenge, several advanced composite fuels have been proposed with uranium nitride as a primary phase. The primary nitride phase is {"}shielded{"} from water by a secondary phase, which would allow the potential benefits of nitride fuels to be realized. This work is an operational assessment of four different candidate composite materials. We considered uranium dioxide (UO2) and UN base cases and compared them with the candidate composite UN-based fuels. The comparison was performed for nominal conditions in a reference PWR with Zr-based cladding. We assessed the impact of UN porosity on the operational performance, because this is a key sensitivity parameter. As composite fuels, we studied UN/U3Si5, UN/U3Si2, UN/UB4, and UN/ZrO2. In the case of UB4, the boron content is 100{\%} enriched in 11B. The proposed zirconium dioxide (ZrO2) phase is cubic and yttria-stabilized. In all cases UN is the primary phase, with small fractions of U3Si5, U3Si5, UB 4, or ZrO2 as a secondary phase. In this analysis we showed that two baseline nitride cases at different fractions of theoretical density (0.8 and 0.95) generally bound the neutronic performance of the candidate composite fuels. Performance was comparable with UO2. One notable difference observed was longer cycle lengths with the composite fuels (due to increased fuel loading). Another significant finding is that the nitride composites exhibited a harder neutron spectrum, which decreased the reactivity worth of burnable absorbers, soluble boron, and control rod materials relative to the UO2 case. In general, the full-core reactivity coefficients for the nitride and nitride composite fuels were within the design limits for the reference PWR and UO2-Zr fuel system. It is noted that the limits for the proposed advanced composites will likely be different than the reference UO2 fuel. The baseline UN and UN/ZrO2 cases, both with relatively high porosity in the nitride phase (20{\%}), exhibited the strongest similarity to the reference UO2 case.",
    author = "Nicholas Brown and Arnold Aronson and Michael Todosow and Ryan Brito and McClellan, {Kenneth J.}",
    year = "2014",
    month = "1",
    day = "1",
    doi = "10.1016/j.nucengdes.2014.04.040",
    language = "English (US)",
    volume = "275",
    pages = "393--407",
    journal = "Nuclear Engineering and Design",
    issn = "0029-5493",
    publisher = "Elsevier BV",

    }

    Neutronic performance of uranium nitride composite fuels in a PWR. / Brown, Nicholas; Aronson, Arnold; Todosow, Michael; Brito, Ryan; McClellan, Kenneth J.

    In: Nuclear Engineering and Design, Vol. 275, 01.01.2014, p. 393-407.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Neutronic performance of uranium nitride composite fuels in a PWR

    AU - Brown, Nicholas

    AU - Aronson, Arnold

    AU - Todosow, Michael

    AU - Brito, Ryan

    AU - McClellan, Kenneth J.

    PY - 2014/1/1

    Y1 - 2014/1/1

    N2 - Uranium mononitride (UN) based composite nuclear fuels may have potential benefits in light water reactor applications, including enhanced thermal conductivity and increased fuel density. However, uranium nitride reacts chemically when in contact with water, especially at high temperatures. To overcome this challenge, several advanced composite fuels have been proposed with uranium nitride as a primary phase. The primary nitride phase is "shielded" from water by a secondary phase, which would allow the potential benefits of nitride fuels to be realized. This work is an operational assessment of four different candidate composite materials. We considered uranium dioxide (UO2) and UN base cases and compared them with the candidate composite UN-based fuels. The comparison was performed for nominal conditions in a reference PWR with Zr-based cladding. We assessed the impact of UN porosity on the operational performance, because this is a key sensitivity parameter. As composite fuels, we studied UN/U3Si5, UN/U3Si2, UN/UB4, and UN/ZrO2. In the case of UB4, the boron content is 100% enriched in 11B. The proposed zirconium dioxide (ZrO2) phase is cubic and yttria-stabilized. In all cases UN is the primary phase, with small fractions of U3Si5, U3Si5, UB 4, or ZrO2 as a secondary phase. In this analysis we showed that two baseline nitride cases at different fractions of theoretical density (0.8 and 0.95) generally bound the neutronic performance of the candidate composite fuels. Performance was comparable with UO2. One notable difference observed was longer cycle lengths with the composite fuels (due to increased fuel loading). Another significant finding is that the nitride composites exhibited a harder neutron spectrum, which decreased the reactivity worth of burnable absorbers, soluble boron, and control rod materials relative to the UO2 case. In general, the full-core reactivity coefficients for the nitride and nitride composite fuels were within the design limits for the reference PWR and UO2-Zr fuel system. It is noted that the limits for the proposed advanced composites will likely be different than the reference UO2 fuel. The baseline UN and UN/ZrO2 cases, both with relatively high porosity in the nitride phase (20%), exhibited the strongest similarity to the reference UO2 case.

    AB - Uranium mononitride (UN) based composite nuclear fuels may have potential benefits in light water reactor applications, including enhanced thermal conductivity and increased fuel density. However, uranium nitride reacts chemically when in contact with water, especially at high temperatures. To overcome this challenge, several advanced composite fuels have been proposed with uranium nitride as a primary phase. The primary nitride phase is "shielded" from water by a secondary phase, which would allow the potential benefits of nitride fuels to be realized. This work is an operational assessment of four different candidate composite materials. We considered uranium dioxide (UO2) and UN base cases and compared them with the candidate composite UN-based fuels. The comparison was performed for nominal conditions in a reference PWR with Zr-based cladding. We assessed the impact of UN porosity on the operational performance, because this is a key sensitivity parameter. As composite fuels, we studied UN/U3Si5, UN/U3Si2, UN/UB4, and UN/ZrO2. In the case of UB4, the boron content is 100% enriched in 11B. The proposed zirconium dioxide (ZrO2) phase is cubic and yttria-stabilized. In all cases UN is the primary phase, with small fractions of U3Si5, U3Si5, UB 4, or ZrO2 as a secondary phase. In this analysis we showed that two baseline nitride cases at different fractions of theoretical density (0.8 and 0.95) generally bound the neutronic performance of the candidate composite fuels. Performance was comparable with UO2. One notable difference observed was longer cycle lengths with the composite fuels (due to increased fuel loading). Another significant finding is that the nitride composites exhibited a harder neutron spectrum, which decreased the reactivity worth of burnable absorbers, soluble boron, and control rod materials relative to the UO2 case. In general, the full-core reactivity coefficients for the nitride and nitride composite fuels were within the design limits for the reference PWR and UO2-Zr fuel system. It is noted that the limits for the proposed advanced composites will likely be different than the reference UO2 fuel. The baseline UN and UN/ZrO2 cases, both with relatively high porosity in the nitride phase (20%), exhibited the strongest similarity to the reference UO2 case.

    UR - http://www.scopus.com/inward/record.url?scp=84902688988&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84902688988&partnerID=8YFLogxK

    U2 - 10.1016/j.nucengdes.2014.04.040

    DO - 10.1016/j.nucengdes.2014.04.040

    M3 - Article

    AN - SCOPUS:84902688988

    VL - 275

    SP - 393

    EP - 407

    JO - Nuclear Engineering and Design

    JF - Nuclear Engineering and Design

    SN - 0029-5493

    ER -