New Insights into Coupled Frequency Dynamics of AC Grids in Rectifier and Inverter Sides of LCC-HVDC Interfacing DFIG-Based Wind Farms

Sai Gopal Vennelaganti, Nilanjan Ray Chaudhuri

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Coupling between frequency dynamics of the ac systems on both inverter and rectifier sides of the line-commutated converter HVDC with the rectifier station operating in frequency control is studied, along with the presence of large DFIG-based wind farms on the weak rectifier-side grid. An averaged model with 79 states, which includes dynamic models of grids on the rectifier and inverter sides, phase-locked loop, and the wind farm is derived. To develop a deeper understanding of the frequency dynamics, a simplified four-state nonlinear model is proposed, which, in turn, reveals strong coupling between frequency and ac voltage at the HVDC rectifier terminal. A firing angle correction strategy is proposed to decouple frequency-voltage interactions, thereby improving the frequency dynamics on the rectifier side. The four-state model is linearized to ascertain the interaction between rectifier- and inverter-side frequencies, and an analytical expression for the frequency dynamics in terms of gains of the frequency controller at the rectifier station is derived. Moreover, the proposed reduced-order model shows the implications of frequency droop control of the wind farms in improving frequency dynamics on both rectifier and inverter sides. Expressions for 'synchronizing' and 'damping torque' contribution from HVDC and wind farm are also established. The analytical expressions and the effectiveness of the proposed strategies are validated through nonlinear time-domain simulations.

Original languageEnglish (US)
Pages (from-to)1765-1776
Number of pages12
JournalIEEE Transactions on Power Delivery
Volume33
Issue number4
DOIs
StatePublished - Aug 2018

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'New Insights into Coupled Frequency Dynamics of AC Grids in Rectifier and Inverter Sides of LCC-HVDC Interfacing DFIG-Based Wind Farms'. Together they form a unique fingerprint.

Cite this