Abstract
5-Hydroxy-2'-deoxycytidine (5-OHdC) and 5-hydroxy-2'-deoxyuridine (5- OHdU) are major products of oxidative DNA damage with mutagenic potential. Until now, no enzymatic activity responsible for their removal has been identified. We report here that both 5-OHdC and 5-OHdU are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase (FPG). 5-OHdU is also a substrate for uracil DNA N-glycosylase. Consistent with their mechanisms of action on previously described substrates, endonuclease III removes 5-OHdC and 5-OHdU via a N-glycosylase/β- elimination reaction, FPG follows a N-glycosylase/β,δ-elimination reaction, and uracil N-glycosylase removes 5-OHdU by N-glycosylase action leaving behind an abasic site. Endonuclease III removes both lesions more efficiently than FPG, and both endonuclease III and FPG remove 5-OHdC slightly more efficiently than 5-OHdU. Uracil DNA N-glycosylase removes 5-OHdU more efficiently than the other two enzymes and has no activity on 5-OHdC even when present in great excess. Analysis of crude extracts obtained from wild type and endonuclease III deletion mutants of E. coli correlated well with data obtained with the purified enzymes.
Original language | English (US) |
---|---|
Pages (from-to) | 18814-18820 |
Number of pages | 7 |
Journal | Journal of Biological Chemistry |
Volume | 269 |
Issue number | 29 |
State | Published - 1994 |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Molecular Biology
- Cell Biology