New substrates for old enzymes. 5-Hydroxy-2'-deoxycytidine and 5-hydroxy- 2'-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2'-deoxyuridine is a substrate for uracil DNA N-glycosylase

Z. Hatahet, Y. W. Kow, A. A. Purmal, R. P. Cunningham, S. S. Wallace

Research output: Contribution to journalArticlepeer-review

286 Scopus citations

Abstract

5-Hydroxy-2'-deoxycytidine (5-OHdC) and 5-hydroxy-2'-deoxyuridine (5- OHdU) are major products of oxidative DNA damage with mutagenic potential. Until now, no enzymatic activity responsible for their removal has been identified. We report here that both 5-OHdC and 5-OHdU are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase (FPG). 5-OHdU is also a substrate for uracil DNA N-glycosylase. Consistent with their mechanisms of action on previously described substrates, endonuclease III removes 5-OHdC and 5-OHdU via a N-glycosylase/β- elimination reaction, FPG follows a N-glycosylase/β,δ-elimination reaction, and uracil N-glycosylase removes 5-OHdU by N-glycosylase action leaving behind an abasic site. Endonuclease III removes both lesions more efficiently than FPG, and both endonuclease III and FPG remove 5-OHdC slightly more efficiently than 5-OHdU. Uracil DNA N-glycosylase removes 5-OHdU more efficiently than the other two enzymes and has no activity on 5-OHdC even when present in great excess. Analysis of crude extracts obtained from wild type and endonuclease III deletion mutants of E. coli correlated well with data obtained with the purified enzymes.

Original languageEnglish (US)
Pages (from-to)18814-18820
Number of pages7
JournalJournal of Biological Chemistry
Volume269
Issue number29
StatePublished - 1994

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'New substrates for old enzymes. 5-Hydroxy-2'-deoxycytidine and 5-hydroxy- 2'-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2'-deoxyuridine is a substrate for uracil DNA N-glycosylase'. Together they form a unique fingerprint.

Cite this