TY - JOUR
T1 - New survey questions and estimators for network clustering with respondentdriven sampling data
AU - Verdery, Ashton M.
AU - Fisher, Jacob C.
AU - Siripong, Nalyn
AU - Abdesselam, Kahina
AU - Bauldry, Shawn
N1 - Funding Information:
We acknowledge assistance provided by the Population Research Institute, which is supported by an infrastructure grant from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (R24-HD041025), and from a seed grant provided by the Institute for CyberScience at Pennsylvania State University. Portions of this research were funded by National Center for Health Statistics grant 1R03SH000056-01 (Ashton M. Verdery, principal investigator).
Publisher Copyright:
© American Sociological Association 2017.
PY - 2017/8
Y1 - 2017/8
N2 - Respondent-driven sampling (RDS) is a popular method for sampling hardto- survey populations that leverages social network connections through peer recruitment. Although RDS is most frequently applied to estimate the prevalence of infections and risk behaviors of interest to public health, such as HIV/AIDS or condom use, it is rarely used to draw inferences about the structural properties of social networks among such populations because it does not typically collect the necessary data. Drawing on recent advances in computer science, the authors introduce a set of data collection instruments andRDS estimators for network clustering, an important topological property that has been linked to a network’s potential for diffusion of information, disease, and health behaviors. The authors use simulations to explore how these estimators, originally developed for random walk samples of computer networks, perform when applied to respondent-driven samples with characteristics encountered in realistic field settings that depart from random walks. In particular, the authors explore the effects of multiple seeds, without replacement versus with replacement, branching chains, imperfect response rates, preferential recruitment, and misreporting of ties. The authors find that clustering coefficient estimators retain desirable properties in respondent-driven samples. This work takes an important step toward calculating network characteristics using nontraditional sampling methods, and it expands the potential of RDS to tell researchers more about hidden populations and the social factors driving disease prevalence.
AB - Respondent-driven sampling (RDS) is a popular method for sampling hardto- survey populations that leverages social network connections through peer recruitment. Although RDS is most frequently applied to estimate the prevalence of infections and risk behaviors of interest to public health, such as HIV/AIDS or condom use, it is rarely used to draw inferences about the structural properties of social networks among such populations because it does not typically collect the necessary data. Drawing on recent advances in computer science, the authors introduce a set of data collection instruments andRDS estimators for network clustering, an important topological property that has been linked to a network’s potential for diffusion of information, disease, and health behaviors. The authors use simulations to explore how these estimators, originally developed for random walk samples of computer networks, perform when applied to respondent-driven samples with characteristics encountered in realistic field settings that depart from random walks. In particular, the authors explore the effects of multiple seeds, without replacement versus with replacement, branching chains, imperfect response rates, preferential recruitment, and misreporting of ties. The authors find that clustering coefficient estimators retain desirable properties in respondent-driven samples. This work takes an important step toward calculating network characteristics using nontraditional sampling methods, and it expands the potential of RDS to tell researchers more about hidden populations and the social factors driving disease prevalence.
UR - http://www.scopus.com/inward/record.url?scp=85044039825&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044039825&partnerID=8YFLogxK
U2 - 10.1177/0081175017716489
DO - 10.1177/0081175017716489
M3 - Article
C2 - 30337767
AN - SCOPUS:85044039825
SN - 0081-1750
VL - 47
SP - 274
EP - 306
JO - Sociological Methodology
JF - Sociological Methodology
IS - 1
ER -