Newsfeed filtering and dissemination for behavioral therapy on social network addictions

Hong Han Shuai, Yi Feng Lan, Yen Chieh Lien, Wang Chien Lee, De Nian Yang, Philip S. Yu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

While the popularity of online social network (OSN) apps continues to grow, little attention has been drawn to the increasing cases of Social Network Addictions (SNAs). In this paper, we argue that by mining OSN data in support of online intervention treatment, data scientists may assist mental healthcare professionals to alleviate the symptoms of users with SNA in early stages. Our idea, based on behavioral therapy, is to incrementally substitute highly addictive newsfeeds with safer, less addictive, and more supportive newsfeeds. To realize this idea, we propose a novel framework, called Newsfeed Substituting and Supporting System (N3S), for newsfeed filtering and dissemination in support of SNA interventions. New research challenges arise in 1) measuring the addictive degree of a newsfeed to an SNA patient, and 2) properly substituting addictive newsfeeds with safe ones based on psychological theories. To address these issues, we first propose the Additive Degree Model (ADM) to measure the addictive degrees of newsfeeds to different users. We then formulate a new optimization problem aiming to maximize the efficacy of behavioral therapy without sacrificing user preferences. Accordingly, we design a randomized algorithm with a theoretical bound. A user study with 716 Facebook users and 11 mental healthcare professionals around the world manifests that the addictive scores can be reduced by more than 30%. Moreover, experiments show that the correlation between the SNA scores and the addictive degrees quantified by the proposed model is much greater than that of state-of-the-art preference based models.

Original languageEnglish (US)
Title of host publicationCIKM 2018 - Proceedings of the 27th ACM International Conference on Information and Knowledge Management
EditorsNorman Paton, Selcuk Candan, Haixun Wang, James Allan, Rakesh Agrawal, Alexandros Labrinidis, Alfredo Cuzzocrea, Mohammed Zaki, Divesh Srivastava, Andrei Broder, Assaf Schuster
PublisherAssociation for Computing Machinery
Pages597-606
Number of pages10
ISBN (Electronic)9781450360142
DOIs
StatePublished - Oct 17 2018
Event27th ACM International Conference on Information and Knowledge Management, CIKM 2018 - Torino, Italy
Duration: Oct 22 2018Oct 26 2018

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Other

Other27th ACM International Conference on Information and Knowledge Management, CIKM 2018
CountryItaly
CityTorino
Period10/22/1810/26/18

All Science Journal Classification (ASJC) codes

  • Business, Management and Accounting(all)
  • Decision Sciences(all)

Fingerprint Dive into the research topics of 'Newsfeed filtering and dissemination for behavioral therapy on social network addictions'. Together they form a unique fingerprint.

  • Cite this

    Shuai, H. H., Lan, Y. F., Lien, Y. C., Lee, W. C., Yang, D. N., & Yu, P. S. (2018). Newsfeed filtering and dissemination for behavioral therapy on social network addictions. In N. Paton, S. Candan, H. Wang, J. Allan, R. Agrawal, A. Labrinidis, A. Cuzzocrea, M. Zaki, D. Srivastava, A. Broder, & A. Schuster (Eds.), CIKM 2018 - Proceedings of the 27th ACM International Conference on Information and Knowledge Management (pp. 597-606). (International Conference on Information and Knowledge Management, Proceedings). Association for Computing Machinery. https://doi.org/10.1145/3269206.3271689