Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms

Baoshun Ma, Jia Lu, Robert Harbaugh, Madhavan L. Raghavan

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

Background. Static deformation analysis and estimation of wall stress distribution of patient-specific cerebral aneurysms can provide useful insights into the disease process and rupture. Method of Approach. The three-dimensional geometry of saccular cerebral aneurysms from 27 patients (18 unruptured and nine ruptured) was reconstructed based on computer tomography angiography images. The aneurysm wall tissue was modeled using a nonlinear, anisotropic, hyperelastic material model (Fung-type) which was incorporated in a user subroutine in ABAQUS. Effective material fiber orientations were assumed to align with principal surface curvatures. Static deformation of the aneurysm models were simulated assuming uniform wall thickness and internal pressure load of 100 mm Hg. Results. The numerical analysis technique was validated by quantitative comparisons to results in the literature. For the patient-specific models, in-plane stresses in the aneurysm wall along both the stiff and weak fiber directions showed significant regional variations with the former being higher. The spatial maximum of stress ranged from as low as 0.30 MPa in a small aneurysm to as high as 1.06 MPa in a giant aneurysm. The patterns of distribution of stress, strain, and surface curvature were found to be similar. Sensitivity analyses showed that the computed stress is mesh independent and not very sensitive to reasonable perturbations in model parameters, and the curvature-based criteria for fiber orientations tend to minimize the total elastic strain energy in the aneurysms wall. Within this small study population, there were no statistically significant differences in the spatial means and maximums of stress and strain values between the ruptured and unruptured groups. However, the ratios between the stress components in the stiff and weak fiber directions were significantly higher in the ruptured group than those in the unruptured group. Conclusions. A methodology for nonlinear, anisotropic static deformation analysis of geometrically realistic aneurysms was developed, which can be used for a more accurate estimation of the stresses and strains than previous methods and to facilitate prospective studies on the role of stress in aneurysm rupture.

Original languageEnglish (US)
Pages (from-to)88-96
Number of pages9
JournalJournal of Biomechanical Engineering
Volume129
Issue number1
DOIs
StatePublished - Feb 1 2007

Fingerprint

Intracranial Aneurysm
Stress analysis
Aneurysm
Fiber reinforced materials
Rupture
Angiography
Fibers
Subroutines
ABAQUS
Strain energy
Tomography
Stress concentration
Numerical analysis
Tissue
Prospective Studies
Geometry
Pressure

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Physiology (medical)

Cite this

@article{c8f032ffbd734d418323e121770a7e1e,
title = "Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms",
abstract = "Background. Static deformation analysis and estimation of wall stress distribution of patient-specific cerebral aneurysms can provide useful insights into the disease process and rupture. Method of Approach. The three-dimensional geometry of saccular cerebral aneurysms from 27 patients (18 unruptured and nine ruptured) was reconstructed based on computer tomography angiography images. The aneurysm wall tissue was modeled using a nonlinear, anisotropic, hyperelastic material model (Fung-type) which was incorporated in a user subroutine in ABAQUS. Effective material fiber orientations were assumed to align with principal surface curvatures. Static deformation of the aneurysm models were simulated assuming uniform wall thickness and internal pressure load of 100 mm Hg. Results. The numerical analysis technique was validated by quantitative comparisons to results in the literature. For the patient-specific models, in-plane stresses in the aneurysm wall along both the stiff and weak fiber directions showed significant regional variations with the former being higher. The spatial maximum of stress ranged from as low as 0.30 MPa in a small aneurysm to as high as 1.06 MPa in a giant aneurysm. The patterns of distribution of stress, strain, and surface curvature were found to be similar. Sensitivity analyses showed that the computed stress is mesh independent and not very sensitive to reasonable perturbations in model parameters, and the curvature-based criteria for fiber orientations tend to minimize the total elastic strain energy in the aneurysms wall. Within this small study population, there were no statistically significant differences in the spatial means and maximums of stress and strain values between the ruptured and unruptured groups. However, the ratios between the stress components in the stiff and weak fiber directions were significantly higher in the ruptured group than those in the unruptured group. Conclusions. A methodology for nonlinear, anisotropic static deformation analysis of geometrically realistic aneurysms was developed, which can be used for a more accurate estimation of the stresses and strains than previous methods and to facilitate prospective studies on the role of stress in aneurysm rupture.",
author = "Baoshun Ma and Jia Lu and Robert Harbaugh and Raghavan, {Madhavan L.}",
year = "2007",
month = "2",
day = "1",
doi = "10.1115/1.2401187",
language = "English (US)",
volume = "129",
pages = "88--96",
journal = "Journal of Biomechanical Engineering",
issn = "0148-0731",
publisher = "American Society of Mechanical Engineers(ASME)",
number = "1",

}

Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms. / Ma, Baoshun; Lu, Jia; Harbaugh, Robert; Raghavan, Madhavan L.

In: Journal of Biomechanical Engineering, Vol. 129, No. 1, 01.02.2007, p. 88-96.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms

AU - Ma, Baoshun

AU - Lu, Jia

AU - Harbaugh, Robert

AU - Raghavan, Madhavan L.

PY - 2007/2/1

Y1 - 2007/2/1

N2 - Background. Static deformation analysis and estimation of wall stress distribution of patient-specific cerebral aneurysms can provide useful insights into the disease process and rupture. Method of Approach. The three-dimensional geometry of saccular cerebral aneurysms from 27 patients (18 unruptured and nine ruptured) was reconstructed based on computer tomography angiography images. The aneurysm wall tissue was modeled using a nonlinear, anisotropic, hyperelastic material model (Fung-type) which was incorporated in a user subroutine in ABAQUS. Effective material fiber orientations were assumed to align with principal surface curvatures. Static deformation of the aneurysm models were simulated assuming uniform wall thickness and internal pressure load of 100 mm Hg. Results. The numerical analysis technique was validated by quantitative comparisons to results in the literature. For the patient-specific models, in-plane stresses in the aneurysm wall along both the stiff and weak fiber directions showed significant regional variations with the former being higher. The spatial maximum of stress ranged from as low as 0.30 MPa in a small aneurysm to as high as 1.06 MPa in a giant aneurysm. The patterns of distribution of stress, strain, and surface curvature were found to be similar. Sensitivity analyses showed that the computed stress is mesh independent and not very sensitive to reasonable perturbations in model parameters, and the curvature-based criteria for fiber orientations tend to minimize the total elastic strain energy in the aneurysms wall. Within this small study population, there were no statistically significant differences in the spatial means and maximums of stress and strain values between the ruptured and unruptured groups. However, the ratios between the stress components in the stiff and weak fiber directions were significantly higher in the ruptured group than those in the unruptured group. Conclusions. A methodology for nonlinear, anisotropic static deformation analysis of geometrically realistic aneurysms was developed, which can be used for a more accurate estimation of the stresses and strains than previous methods and to facilitate prospective studies on the role of stress in aneurysm rupture.

AB - Background. Static deformation analysis and estimation of wall stress distribution of patient-specific cerebral aneurysms can provide useful insights into the disease process and rupture. Method of Approach. The three-dimensional geometry of saccular cerebral aneurysms from 27 patients (18 unruptured and nine ruptured) was reconstructed based on computer tomography angiography images. The aneurysm wall tissue was modeled using a nonlinear, anisotropic, hyperelastic material model (Fung-type) which was incorporated in a user subroutine in ABAQUS. Effective material fiber orientations were assumed to align with principal surface curvatures. Static deformation of the aneurysm models were simulated assuming uniform wall thickness and internal pressure load of 100 mm Hg. Results. The numerical analysis technique was validated by quantitative comparisons to results in the literature. For the patient-specific models, in-plane stresses in the aneurysm wall along both the stiff and weak fiber directions showed significant regional variations with the former being higher. The spatial maximum of stress ranged from as low as 0.30 MPa in a small aneurysm to as high as 1.06 MPa in a giant aneurysm. The patterns of distribution of stress, strain, and surface curvature were found to be similar. Sensitivity analyses showed that the computed stress is mesh independent and not very sensitive to reasonable perturbations in model parameters, and the curvature-based criteria for fiber orientations tend to minimize the total elastic strain energy in the aneurysms wall. Within this small study population, there were no statistically significant differences in the spatial means and maximums of stress and strain values between the ruptured and unruptured groups. However, the ratios between the stress components in the stiff and weak fiber directions were significantly higher in the ruptured group than those in the unruptured group. Conclusions. A methodology for nonlinear, anisotropic static deformation analysis of geometrically realistic aneurysms was developed, which can be used for a more accurate estimation of the stresses and strains than previous methods and to facilitate prospective studies on the role of stress in aneurysm rupture.

UR - http://www.scopus.com/inward/record.url?scp=34248208214&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34248208214&partnerID=8YFLogxK

U2 - 10.1115/1.2401187

DO - 10.1115/1.2401187

M3 - Article

VL - 129

SP - 88

EP - 96

JO - Journal of Biomechanical Engineering

JF - Journal of Biomechanical Engineering

SN - 0148-0731

IS - 1

ER -