Nonlinear response of hail precipitation rate to environmental moisture content: A real case modeling study of an episodic midlatitude severe convective event

Mingxin Li, Fuqing Zhang, Qinghong Zhang, Jerry Y. Harrington, Matthew R. Kumjian

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

The dependence of hail production on initial moisture content in a simulated midlatitude episodic convective event occurred in northeast China on 10-11 June 2005 was investigated using the Weather Research and Forecasting (WRF) model with a double-moment microphysics scheme where both graupel and hail are considered. Three sensitivity experiments were performed by modifying the initial water vapor mixing ratio profile to 90% (“Q-10%"), 105% (“Q+5%"), and 110% (“Q+10%") of the initial conditions used for the control simulation. It was found that increasing the initial water vapor content caused the hail and total precipitation rates to increase during the first 5 h. The precipitation response to increasing water vapor content was monotonic for this first episode; however, for the event’s second episode, the hail precipitation rate responds to the initial water vapor profile nonlinearly, while the total precipitation rate responds mostly monotonically. In particular, simulation Q+5% achieves the largest hail production rate while simulation Q+10% has the largest total precipitation rate. In contrast, during the second episode simulation Q-10% has the strongest vertical motion, produces the most cloud ice and snow, but has the lowest hail production. Analysis shows that increasing the initial moisture content directly increases the precipitation during the first episode, which subsequently induces a stronger, longer-lasting cold pool that limits the development of deep convection during the second episode.

Original languageEnglish (US)
Pages (from-to)6729-6747
Number of pages19
JournalJournal of Geophysical Research
Volume122
Issue number13
DOIs
StatePublished - Jan 1 2017

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Nonlinear response of hail precipitation rate to environmental moisture content: A real case modeling study of an episodic midlatitude severe convective event'. Together they form a unique fingerprint.

  • Cite this