TY - JOUR
T1 - Numerical approach for prediction of turbulent flow resistance coefficient of 90° pipe bends
AU - Ayala, Manuel
AU - Cimbala, John M.
N1 - Publisher Copyright:
© IMechE 2020.
PY - 2021/4
Y1 - 2021/4
N2 - In the present study turbulent flow in a circular cross-sectioned 90° smooth-walled pipe bend has been investigated numerically. The geometry of the model consisted of three sections: a straight inlet pipe of length 52 diameters, a 90° bend with radius of curvature 1 diameter, and a straight downstream pipe of length 52 diameters. Reynolds numbers from 5,000 to 120,000 were considered. The numerical model was developed using COMSOL Multiphysics and all turbulent flow simulations were performed using the standard k-ε turbulence model. The main objective of this work was to estimate the resistance coefficient of pipe bends using not only pressure drop but also information of the flow behavior far downstream in the outlet pipe. Wall static pressure and velocity fields of the secondary flow were illustrated to provide information of the flow behavior in the bend and downstream of the pipe bend. Furthermore, swirl intensity of secondary flow was presented in order to describe its behavior as the flow develops in the outlet pipe. Estimations of resistance coefficient were calculated and compared to other studies. It was found that the procedure used in this study is a viable method for a more accurate estimation of resistance coefficient values for turbulent pipe flows containing 90° bends. For best accuracy in either experimental or computational analyses, it is recommended that pressure in the downstream tangent be measured at no less than fifty diameters downstream of the bend to avoid influence of the secondary flow.
AB - In the present study turbulent flow in a circular cross-sectioned 90° smooth-walled pipe bend has been investigated numerically. The geometry of the model consisted of three sections: a straight inlet pipe of length 52 diameters, a 90° bend with radius of curvature 1 diameter, and a straight downstream pipe of length 52 diameters. Reynolds numbers from 5,000 to 120,000 were considered. The numerical model was developed using COMSOL Multiphysics and all turbulent flow simulations were performed using the standard k-ε turbulence model. The main objective of this work was to estimate the resistance coefficient of pipe bends using not only pressure drop but also information of the flow behavior far downstream in the outlet pipe. Wall static pressure and velocity fields of the secondary flow were illustrated to provide information of the flow behavior in the bend and downstream of the pipe bend. Furthermore, swirl intensity of secondary flow was presented in order to describe its behavior as the flow develops in the outlet pipe. Estimations of resistance coefficient were calculated and compared to other studies. It was found that the procedure used in this study is a viable method for a more accurate estimation of resistance coefficient values for turbulent pipe flows containing 90° bends. For best accuracy in either experimental or computational analyses, it is recommended that pressure in the downstream tangent be measured at no less than fifty diameters downstream of the bend to avoid influence of the secondary flow.
UR - http://www.scopus.com/inward/record.url?scp=85092364241&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092364241&partnerID=8YFLogxK
U2 - 10.1177/0954408920964008
DO - 10.1177/0954408920964008
M3 - Article
AN - SCOPUS:85092364241
SN - 0954-4089
VL - 235
SP - 351
EP - 360
JO - Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
JF - Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
IS - 2
ER -