Numerical investigation of the effect of frictionally weak minerals on shear strength of faults

Chaoyi Wang, Derek Elsworth

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Recent observations suggest that the presence of frictionally weak minerals in a majority frictionally strong matrix may explain the reduced strength and instability in faults. Experimental results on synthetic fault gouges using a mixture of a frictionally strong phase and a frictionally weak phase indicate that the fault can be weakened by even a small amount of frictionally weak minerals. These frictionally weak minerals weaken the fault by either acting as weak spots/clusters or as a through-going weak layer in the bulk gouge. A two-dimensional Distinct Element Method (DEM) numerical model using the Particle Flow Code 2D (PFC 2D) is developed to investigate the effect of frictionally weak minerals on the bulk shear strength of fault gouge. Mechanical response of particles is modeled using a linear-elastic contact model and Coulomb's friction law. Numerical direct shear experiments were performed on homogeneous mixtures of weak and strong mineral particles and also on heterogeneous mixtures consisting of a frictionally weak layer sandwiched in frictionally strong minerals. The weight percentage (wt%) of the frictionally weak mineral in the homogeneous mixtures and the relative thickness of the frictionally weak mineral layer in the heterogeneous mixtures are adjusted schematically to obtain the weakening regime of the bulk shear strength. A transition from high to low residual coefficient of friction is observed. Specifically, for homogenous mixtures a sharp drop of bulk shear strength is observed with 25% of frictionally weak mineral presented in the mixture, and a dominant influence occurs at 50%; for heterogeneous mixtures, noticeable weakening is shown at a relative weak layer thickness of 0.05, and a dominant influence quickly follows at a relative thickness of 0.10. The observed weakening regime matches well with previous lab results using talc/quartz mixtures.

Original languageEnglish (US)
Title of host publication50th US Rock Mechanics / Geomechanics Symposium 2016
PublisherAmerican Rock Mechanics Association (ARMA)
Pages2413-2418
Number of pages6
ISBN (Electronic)9781510828025
StatePublished - Jan 1 2016
Event50th US Rock Mechanics / Geomechanics Symposium 2016 - Houston, United States
Duration: Jun 26 2016Jun 29 2016

Publication series

Name50th US Rock Mechanics / Geomechanics Symposium 2016
Volume3

Other

Other50th US Rock Mechanics / Geomechanics Symposium 2016
CountryUnited States
CityHouston
Period6/26/166/29/16

All Science Journal Classification (ASJC) codes

  • Geochemistry and Petrology
  • Geophysics

Fingerprint Dive into the research topics of 'Numerical investigation of the effect of frictionally weak minerals on shear strength of faults'. Together they form a unique fingerprint.

  • Cite this

    Wang, C., & Elsworth, D. (2016). Numerical investigation of the effect of frictionally weak minerals on shear strength of faults. In 50th US Rock Mechanics / Geomechanics Symposium 2016 (pp. 2413-2418). (50th US Rock Mechanics / Geomechanics Symposium 2016; Vol. 3). American Rock Mechanics Association (ARMA).