Abstract
The flow in tight rod bundles is characterized by long-term, large-scale coherent patterns in the stream-wise direction. In the present work, the issue of simulating these structures through unsteady CFD simulations employing periodic boundary conditions in the stream-wise direction, will be addressed. The validity of the approach is assessed through the comparison of a large eddy simulation (LES) for similar flow conditions inside a simplified geometry and experimental data. A powerful statistical tool (proper orthonormal decomposition) is used to analyze the time varying solution. The flow field has been decomposed into a series of normal modes, identifying the structures responsible for the flow transfer between sub-channels. Additional insights on the physics of these coherent structures are obtained. An unsteady Reynolds averaged Navier-Stokes simulation (URANS) of the flow in a rod bundle has then been carried out. The comparison between numerical results and experimental results [Krauss, T., Meyer, L., 1998. Experimental investigation of turbulent transport of momentum and energy in a heated rod bundle. Nucl. Eng. Design 180, 185-206] proves that accuracy can be achieved for averaged statistics such as stream-wise velocity, turbulent intensity and wall shear stresses.
Original language | English (US) |
---|---|
Pages (from-to) | 1703-1719 |
Number of pages | 17 |
Journal | Nuclear Engineering and Design |
Volume | 238 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2008 |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
- Materials Science(all)
- Nuclear Energy and Engineering
- Safety, Risk, Reliability and Quality
- Waste Management and Disposal
- Mechanical Engineering