Observation of room-temperature polar skyrmions

S. Das, Y. L. Tang, Z. Hong, M. A.P. Gonçalves, M. R. McCarter, C. Klewe, K. X. Nguyen, F. Gómez-Ortiz, P. Shafer, E. Arenholz, V. A. Stoica, S. L. Hsu, B. Wang, C. Ophus, J. F. Liu, C. T. Nelson, S. Saremi, B. Prasad, A. B. Mei, D. G. SchlomJ. Íñiguez, P. García-Fernández, D. A. Muller, Long-qing Chen, J. Junquera, L. W. Martin, R. Ramesh

Research output: Contribution to journalLetter

8 Citations (Scopus)

Abstract

Complex topological configurations are fertile ground for exploring emergent phenomena and exotic phases in condensed-matter physics. For example, the recent discovery of polarization vortices and their associated complex-phase coexistence and response under applied electric fields in superlattices of (PbTiO 3 ) n /(SrTiO 3 ) n suggests the presence of a complex, multi-dimensional system capable of interesting physical responses, such as chirality, negative capacitance and large piezo-electric responses 1–3 . Here, by varying epitaxial constraints, we discover room-temperature polar-skyrmion bubbles in a lead titanate layer confined by strontium titanate layers, which are imaged by atomic-resolution scanning transmission electron microscopy. Phase-field modelling and second-principles calculations reveal that the polar-skyrmion bubbles have a skyrmion number of +1, and resonant soft-X-ray diffraction experiments show circular dichroism, confirming chirality. Such nanometre-scale polar-skyrmion bubbles are the electric analogues of magnetic skyrmions, and could contribute to the advancement of ferroelectrics towards functionalities incorporating emergent chirality and electrically controllable negative capacitance.

Original languageEnglish (US)
Pages (from-to)368-372
Number of pages5
JournalNature
Volume568
Issue number7752
DOIs
StatePublished - Apr 18 2019

Fingerprint

Scanning Transmission Electron Microscopy
Physics
Circular Dichroism
X-Ray Diffraction
Observation
Temperature
lead titanate
strontium titanium oxide

All Science Journal Classification (ASJC) codes

  • General

Cite this

Das, S., Tang, Y. L., Hong, Z., Gonçalves, M. A. P., McCarter, M. R., Klewe, C., ... Ramesh, R. (2019). Observation of room-temperature polar skyrmions. Nature, 568(7752), 368-372. https://doi.org/10.1038/s41586-019-1092-8
Das, S. ; Tang, Y. L. ; Hong, Z. ; Gonçalves, M. A.P. ; McCarter, M. R. ; Klewe, C. ; Nguyen, K. X. ; Gómez-Ortiz, F. ; Shafer, P. ; Arenholz, E. ; Stoica, V. A. ; Hsu, S. L. ; Wang, B. ; Ophus, C. ; Liu, J. F. ; Nelson, C. T. ; Saremi, S. ; Prasad, B. ; Mei, A. B. ; Schlom, D. G. ; Íñiguez, J. ; García-Fernández, P. ; Muller, D. A. ; Chen, Long-qing ; Junquera, J. ; Martin, L. W. ; Ramesh, R. / Observation of room-temperature polar skyrmions. In: Nature. 2019 ; Vol. 568, No. 7752. pp. 368-372.
@article{7c9ebccfd396446fae0b506fc592c11e,
title = "Observation of room-temperature polar skyrmions",
abstract = "Complex topological configurations are fertile ground for exploring emergent phenomena and exotic phases in condensed-matter physics. For example, the recent discovery of polarization vortices and their associated complex-phase coexistence and response under applied electric fields in superlattices of (PbTiO 3 ) n /(SrTiO 3 ) n suggests the presence of a complex, multi-dimensional system capable of interesting physical responses, such as chirality, negative capacitance and large piezo-electric responses 1–3 . Here, by varying epitaxial constraints, we discover room-temperature polar-skyrmion bubbles in a lead titanate layer confined by strontium titanate layers, which are imaged by atomic-resolution scanning transmission electron microscopy. Phase-field modelling and second-principles calculations reveal that the polar-skyrmion bubbles have a skyrmion number of +1, and resonant soft-X-ray diffraction experiments show circular dichroism, confirming chirality. Such nanometre-scale polar-skyrmion bubbles are the electric analogues of magnetic skyrmions, and could contribute to the advancement of ferroelectrics towards functionalities incorporating emergent chirality and electrically controllable negative capacitance.",
author = "S. Das and Tang, {Y. L.} and Z. Hong and Gon{\cc}alves, {M. A.P.} and McCarter, {M. R.} and C. Klewe and Nguyen, {K. X.} and F. G{\'o}mez-Ortiz and P. Shafer and E. Arenholz and Stoica, {V. A.} and Hsu, {S. L.} and B. Wang and C. Ophus and Liu, {J. F.} and Nelson, {C. T.} and S. Saremi and B. Prasad and Mei, {A. B.} and Schlom, {D. G.} and J. {\'I}{\~n}iguez and P. Garc{\'i}a-Fern{\'a}ndez and Muller, {D. A.} and Long-qing Chen and J. Junquera and Martin, {L. W.} and R. Ramesh",
year = "2019",
month = "4",
day = "18",
doi = "10.1038/s41586-019-1092-8",
language = "English (US)",
volume = "568",
pages = "368--372",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7752",

}

Das, S, Tang, YL, Hong, Z, Gonçalves, MAP, McCarter, MR, Klewe, C, Nguyen, KX, Gómez-Ortiz, F, Shafer, P, Arenholz, E, Stoica, VA, Hsu, SL, Wang, B, Ophus, C, Liu, JF, Nelson, CT, Saremi, S, Prasad, B, Mei, AB, Schlom, DG, Íñiguez, J, García-Fernández, P, Muller, DA, Chen, L, Junquera, J, Martin, LW & Ramesh, R 2019, 'Observation of room-temperature polar skyrmions', Nature, vol. 568, no. 7752, pp. 368-372. https://doi.org/10.1038/s41586-019-1092-8

Observation of room-temperature polar skyrmions. / Das, S.; Tang, Y. L.; Hong, Z.; Gonçalves, M. A.P.; McCarter, M. R.; Klewe, C.; Nguyen, K. X.; Gómez-Ortiz, F.; Shafer, P.; Arenholz, E.; Stoica, V. A.; Hsu, S. L.; Wang, B.; Ophus, C.; Liu, J. F.; Nelson, C. T.; Saremi, S.; Prasad, B.; Mei, A. B.; Schlom, D. G.; Íñiguez, J.; García-Fernández, P.; Muller, D. A.; Chen, Long-qing; Junquera, J.; Martin, L. W.; Ramesh, R.

In: Nature, Vol. 568, No. 7752, 18.04.2019, p. 368-372.

Research output: Contribution to journalLetter

TY - JOUR

T1 - Observation of room-temperature polar skyrmions

AU - Das, S.

AU - Tang, Y. L.

AU - Hong, Z.

AU - Gonçalves, M. A.P.

AU - McCarter, M. R.

AU - Klewe, C.

AU - Nguyen, K. X.

AU - Gómez-Ortiz, F.

AU - Shafer, P.

AU - Arenholz, E.

AU - Stoica, V. A.

AU - Hsu, S. L.

AU - Wang, B.

AU - Ophus, C.

AU - Liu, J. F.

AU - Nelson, C. T.

AU - Saremi, S.

AU - Prasad, B.

AU - Mei, A. B.

AU - Schlom, D. G.

AU - Íñiguez, J.

AU - García-Fernández, P.

AU - Muller, D. A.

AU - Chen, Long-qing

AU - Junquera, J.

AU - Martin, L. W.

AU - Ramesh, R.

PY - 2019/4/18

Y1 - 2019/4/18

N2 - Complex topological configurations are fertile ground for exploring emergent phenomena and exotic phases in condensed-matter physics. For example, the recent discovery of polarization vortices and their associated complex-phase coexistence and response under applied electric fields in superlattices of (PbTiO 3 ) n /(SrTiO 3 ) n suggests the presence of a complex, multi-dimensional system capable of interesting physical responses, such as chirality, negative capacitance and large piezo-electric responses 1–3 . Here, by varying epitaxial constraints, we discover room-temperature polar-skyrmion bubbles in a lead titanate layer confined by strontium titanate layers, which are imaged by atomic-resolution scanning transmission electron microscopy. Phase-field modelling and second-principles calculations reveal that the polar-skyrmion bubbles have a skyrmion number of +1, and resonant soft-X-ray diffraction experiments show circular dichroism, confirming chirality. Such nanometre-scale polar-skyrmion bubbles are the electric analogues of magnetic skyrmions, and could contribute to the advancement of ferroelectrics towards functionalities incorporating emergent chirality and electrically controllable negative capacitance.

AB - Complex topological configurations are fertile ground for exploring emergent phenomena and exotic phases in condensed-matter physics. For example, the recent discovery of polarization vortices and their associated complex-phase coexistence and response under applied electric fields in superlattices of (PbTiO 3 ) n /(SrTiO 3 ) n suggests the presence of a complex, multi-dimensional system capable of interesting physical responses, such as chirality, negative capacitance and large piezo-electric responses 1–3 . Here, by varying epitaxial constraints, we discover room-temperature polar-skyrmion bubbles in a lead titanate layer confined by strontium titanate layers, which are imaged by atomic-resolution scanning transmission electron microscopy. Phase-field modelling and second-principles calculations reveal that the polar-skyrmion bubbles have a skyrmion number of +1, and resonant soft-X-ray diffraction experiments show circular dichroism, confirming chirality. Such nanometre-scale polar-skyrmion bubbles are the electric analogues of magnetic skyrmions, and could contribute to the advancement of ferroelectrics towards functionalities incorporating emergent chirality and electrically controllable negative capacitance.

UR - http://www.scopus.com/inward/record.url?scp=85064555044&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85064555044&partnerID=8YFLogxK

U2 - 10.1038/s41586-019-1092-8

DO - 10.1038/s41586-019-1092-8

M3 - Letter

C2 - 30996320

AN - SCOPUS:85064555044

VL - 568

SP - 368

EP - 372

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7752

ER -

Das S, Tang YL, Hong Z, Gonçalves MAP, McCarter MR, Klewe C et al. Observation of room-temperature polar skyrmions. Nature. 2019 Apr 18;568(7752):368-372. https://doi.org/10.1038/s41586-019-1092-8