Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model

Lawrence W. Cheuk, Matthew A. Nichols, Katherine R. Lawrence, Melih Okan, Hao Zhang, Ehsan Khatami, Nandini Trivedi, Thereza Paiva, Marcos Rigol, Martin W. Zwierlein

Research output: Contribution to journalArticle

134 Scopus citations

Abstract

Strong electron correlations lie at the origin of high-temperature superconductivity. Its essence is believed to be captured by the Fermi-Hubbard model of repulsively interacting fermions on a lattice. Here we report on the site-resolved observation of charge and spin correlations in the two-dimensional (2D) Fermi-Hubbard model realized with ultracold atoms. Antiferromagnetic spin correlations are maximal at half-filling and weaken monotonically upon doping. At large doping, nearest-neighbor correlations between singly charged sites are negative, revealing the formation of a correlation hole, the suppressed probability of finding two fermions near each other. As the doping is reduced, the correlations become positive, signaling strong bunching of doublons and holes, in agreement with numerical calculations. The dynamics of the doublon-hole correlations should play an important role for transport in the Fermi-Hubbard model.

Original languageEnglish (US)
Pages (from-to)1260-1264
Number of pages5
JournalScience
Volume353
Issue number6305
DOIs
StatePublished - Sep 16 2016

    Fingerprint

All Science Journal Classification (ASJC) codes

  • General

Cite this

Cheuk, L. W., Nichols, M. A., Lawrence, K. R., Okan, M., Zhang, H., Khatami, E., Trivedi, N., Paiva, T., Rigol, M., & Zwierlein, M. W. (2016). Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model. Science, 353(6305), 1260-1264. https://doi.org/10.1126/science.aag3349