Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

M. Yi, Z. K. Liu, Y. Zhang, R. Yu, J. X. Zhu, J. J. Lee, R. G. Moore, F. T. Schmitt, W. Li, S. C. Riggs, J. H. Chu, B. Lv, J. Hu, M. Hashimoto, S. K. Mo, Z. Hussain, Z. Q. Mao, C. W. Chu, I. R. Fisher, Q. SiZ. X. Shen, D. H. Lu

Research output: Contribution to journalArticle

79 Citations (Scopus)

Abstract

Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe 0.56 Se 0.44, monolayer FeSe grown on SrTiO3 and K0.76 Fe1.72 Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the d xy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. These observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.

Original languageEnglish (US)
Article number7777
JournalNature communications
Volume6
DOIs
StatePublished - Jul 23 2015

Fingerprint

Chalcogenides
chalcogenides
Fermi surface
Iron
Observation
iron
orbitals
Fermi surfaces
Superconducting materials
Topology
Electron correlations
topology
Photoelectron spectroscopy
Photoelectron Spectroscopy
Superconductivity
Monolayers
photoelectric emission
superconductivity
Electrons
Weights and Measures

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Cite this

Yi, M., Liu, Z. K., Zhang, Y., Yu, R., Zhu, J. X., Lee, J. J., ... Lu, D. H. (2015). Observation of universal strong orbital-dependent correlation effects in iron chalcogenides. Nature communications, 6, [7777]. https://doi.org/10.1038/ncomms8777
Yi, M. ; Liu, Z. K. ; Zhang, Y. ; Yu, R. ; Zhu, J. X. ; Lee, J. J. ; Moore, R. G. ; Schmitt, F. T. ; Li, W. ; Riggs, S. C. ; Chu, J. H. ; Lv, B. ; Hu, J. ; Hashimoto, M. ; Mo, S. K. ; Hussain, Z. ; Mao, Z. Q. ; Chu, C. W. ; Fisher, I. R. ; Si, Q. ; Shen, Z. X. ; Lu, D. H. / Observation of universal strong orbital-dependent correlation effects in iron chalcogenides. In: Nature communications. 2015 ; Vol. 6.
@article{5849f2eb55104a92939b869d551ef9cc,
title = "Observation of universal strong orbital-dependent correlation effects in iron chalcogenides",
abstract = "Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe 0.56 Se 0.44, monolayer FeSe grown on SrTiO3 and K0.76 Fe1.72 Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the d xy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. These observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.",
author = "M. Yi and Liu, {Z. K.} and Y. Zhang and R. Yu and Zhu, {J. X.} and Lee, {J. J.} and Moore, {R. G.} and Schmitt, {F. T.} and W. Li and Riggs, {S. C.} and Chu, {J. H.} and B. Lv and J. Hu and M. Hashimoto and Mo, {S. K.} and Z. Hussain and Mao, {Z. Q.} and Chu, {C. W.} and Fisher, {I. R.} and Q. Si and Shen, {Z. X.} and Lu, {D. H.}",
year = "2015",
month = "7",
day = "23",
doi = "10.1038/ncomms8777",
language = "English (US)",
volume = "6",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",

}

Yi, M, Liu, ZK, Zhang, Y, Yu, R, Zhu, JX, Lee, JJ, Moore, RG, Schmitt, FT, Li, W, Riggs, SC, Chu, JH, Lv, B, Hu, J, Hashimoto, M, Mo, SK, Hussain, Z, Mao, ZQ, Chu, CW, Fisher, IR, Si, Q, Shen, ZX & Lu, DH 2015, 'Observation of universal strong orbital-dependent correlation effects in iron chalcogenides', Nature communications, vol. 6, 7777. https://doi.org/10.1038/ncomms8777

Observation of universal strong orbital-dependent correlation effects in iron chalcogenides. / Yi, M.; Liu, Z. K.; Zhang, Y.; Yu, R.; Zhu, J. X.; Lee, J. J.; Moore, R. G.; Schmitt, F. T.; Li, W.; Riggs, S. C.; Chu, J. H.; Lv, B.; Hu, J.; Hashimoto, M.; Mo, S. K.; Hussain, Z.; Mao, Z. Q.; Chu, C. W.; Fisher, I. R.; Si, Q.; Shen, Z. X.; Lu, D. H.

In: Nature communications, Vol. 6, 7777, 23.07.2015.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

AU - Yi, M.

AU - Liu, Z. K.

AU - Zhang, Y.

AU - Yu, R.

AU - Zhu, J. X.

AU - Lee, J. J.

AU - Moore, R. G.

AU - Schmitt, F. T.

AU - Li, W.

AU - Riggs, S. C.

AU - Chu, J. H.

AU - Lv, B.

AU - Hu, J.

AU - Hashimoto, M.

AU - Mo, S. K.

AU - Hussain, Z.

AU - Mao, Z. Q.

AU - Chu, C. W.

AU - Fisher, I. R.

AU - Si, Q.

AU - Shen, Z. X.

AU - Lu, D. H.

PY - 2015/7/23

Y1 - 2015/7/23

N2 - Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe 0.56 Se 0.44, monolayer FeSe grown on SrTiO3 and K0.76 Fe1.72 Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the d xy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. These observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.

AB - Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe 0.56 Se 0.44, monolayer FeSe grown on SrTiO3 and K0.76 Fe1.72 Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the d xy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. These observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.

UR - http://www.scopus.com/inward/record.url?scp=84937856850&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84937856850&partnerID=8YFLogxK

U2 - 10.1038/ncomms8777

DO - 10.1038/ncomms8777

M3 - Article

AN - SCOPUS:84937856850

VL - 6

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

M1 - 7777

ER -