Observed properties of exoplanets: Masses, orbits, and metallicities

Geoffrey Marcy, R. Paul Butler, Debra Fischer, Steven Vogt, Jason T. Wright, Chris G. Tinney, Hugh R.A. Jones

Research output: Contribution to journalArticlepeer-review

318 Scopus citations

Abstract

We review the observed properties of exoplanets found by the Doppler technique that has revealed 152 planets to date. We focus on the ongoing 18-year survey of 1330 FGKM type stars at Lick, Keck, and the Anglo-Australian Telescopes that offers both uniform Doppler precision (3m s-1) and long duration. The 104 planets detected in this survey have minimum masses (M sin i) as low as 6 MEarth, orbiting between 0.02 and 6 AU. The core-accretion model of planet formation is supported by four observations: 1) The mass distribution rises toward the lowest detectable masses, dN/dM ∝ M-1.0. 2) Stellar metallicity correlates strongly with the presence of planets. 3) One planet (1.3 Msat) has a massive rocky core, M Core ≈ 70 MEarth. 4) A super-Earth of ∼ 7 M Earth has been discovered. The distribution of semi-major axes rises from 0.3 - 3.0 AU (dN/d log a) and extrapolation suggests that ∼12% of the FGK stars harbor gas-giant exoplanets within 20 AU. The median orbital eccentricity is 〈e〉 = 0.25, and even planets beyond 3 AU reside in eccentric orbits, suggesting that the circular orbits in our Solar System are unusual. The occurrence "hot Jupiters" within 0.1 AU of FGK stars is 1.2±0.2%. Among stars with one planet, 14% have at least one additional planet, occasionally locked in resonances. Kepler and COROT will measure the occurrence of earth-sized planets. The Space Interferometry Mission (SIM) will detect planets with masses as low as 3 MEarth orbiting within 2 AU of stars within 10 pc, and it will measure masses, orbits, and multiplicity. The candidate rocky planets will be amenable to follow-up spectroscopy by the "Terrestrial Planet Finder" and Darwin.

Original languageEnglish (US)
Pages (from-to)24-42
Number of pages19
JournalProgress of Theoretical Physics Supplement
Volume158
DOIs
StatePublished - 2005

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Observed properties of exoplanets: Masses, orbits, and metallicities'. Together they form a unique fingerprint.

Cite this