Octahedral tilt-suppression of ferroelectric domain wall dynamics and the associated piezoelectric activity in Pb (Zr,Ti) O3

R. Eitel, C. A. Randall

Research output: Contribution to journalArticle

69 Scopus citations

Abstract

The R3m-R3c transition is in a limited phase field in the Pb (Zr1-x, Tix) O3 (PZT) phase diagram and is a ferroelectric-ferroelectric phase transition that involves the coupling of a secondary displacive ferroelastic phase transition, associated with a structural rotation of the octahedra about the polar threefold axis. Through systematic temperature-dependent piezoelectric characterization under resonance conditions and high-field unipolar ac drive the influence of the aforementioned transition on piezoelectric and electromechanical properties is noted for two compositions x=0.30 and x=0.40 mol fraction lead titanate. Applying Rayleigh law analysis to access the relative extrinsic domain wall contributions to the nonlinear permittivity and converse piezoelectric properties, we observe significant differences in the nonlinear response between the R3m and R3c phases and note a discontinuity at the transition for both PZT compositions. A complementary study was conducted through diffraction contrast transmission electron microscopy to access structure property relations. Diffraction contrast imaging reveals that antiphase boundaries (APB's) associated with octahedral tilt may coincide with non-180° ferroelectric domain walls. This microstructural evidence suggests that APB's suppress the motion of non-180° ferroelectric domain walls, leading to reduced extrinsic contributions to the piezoelectric and dielectric response in the low-temperature phase (R3c). The implications of these observations are discussed in relation to both the PZT system and other perovskite-based systems such as BiM O3 - PbTi O3 systems.

Original languageEnglish (US)
Article number094106
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume75
Issue number9
DOIs
StatePublished - Mar 12 2007

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Octahedral tilt-suppression of ferroelectric domain wall dynamics and the associated piezoelectric activity in Pb (Zr,Ti) O3'. Together they form a unique fingerprint.

  • Cite this