TY - JOUR
T1 - Okadaic acid increases ARNT homodimer transactivation potential
AU - Levine, S. L.
AU - Perdew, Gary H.
N1 - Funding Information:
This work was supported by the National Institute of Environmental Health Science Grant ES09272 and ES04869 awarded to G.H. Perdew and an N IEHS Post-Doctoral Fellowship ES05863 awarded to S.L. Levine.
PY - 2002
Y1 - 2002
N2 - The human aryl hydrocarbon nuclear translocator (hARNT) protein belongs to the family of basic helix-loop-helix (bHLH) PAS transcription factors and regulates a range of cellular processes by either homodimerizing or heterodimerizing with other bHLH-PAS proteins. hARNT has been shown to be almost exclusively phosphorylated on serine residues. However, regulation of hARNT with respect to phosphorylation remains poorly understood. The phosphatase inhibitor okadaic acid was used to explore whether a change in hARNT phosphorylation status could influence hARNT homodimer activity. The hARNT homodimer has been shown to bind to E boxes and E-box binding factors are believed to be important in the regulation of cell differentiation and proliferation. Okadaic acid significantly increased hARNT-mediated class B, E-box-driven reporter activity in COS-1 cells, transiently expressing hARNT without affecting hARNT protein levels. This alteration in hARNT-mediated class B, E-box-driven reporter activity correlates with an observed increase in [32P]orthophosphate incorporation into hARNT. Treatment with okadaic acid resulted in a 12-fold increase in [32P]orthophosphate incorporation into hARNT that was transiently expressed in COS-1 cells; an increase in the number of tryptic phosphopeptides generated from hARNT digests on two-dimensional phosphopeptide maps was also observed. Despite the significant increase in [32P]orthophosphate incorporation into hARNT, serine remained the predominantly phosphorylated residue. Clearly, increased serine phosphorylation does not appear to negatively regulate hARNT homodimerization or transactivation potential. These results demonstrate that increased hARNT homodimer signaling in COS-1 cells may result from a direct change in hARNT phosphorylation status.
AB - The human aryl hydrocarbon nuclear translocator (hARNT) protein belongs to the family of basic helix-loop-helix (bHLH) PAS transcription factors and regulates a range of cellular processes by either homodimerizing or heterodimerizing with other bHLH-PAS proteins. hARNT has been shown to be almost exclusively phosphorylated on serine residues. However, regulation of hARNT with respect to phosphorylation remains poorly understood. The phosphatase inhibitor okadaic acid was used to explore whether a change in hARNT phosphorylation status could influence hARNT homodimer activity. The hARNT homodimer has been shown to bind to E boxes and E-box binding factors are believed to be important in the regulation of cell differentiation and proliferation. Okadaic acid significantly increased hARNT-mediated class B, E-box-driven reporter activity in COS-1 cells, transiently expressing hARNT without affecting hARNT protein levels. This alteration in hARNT-mediated class B, E-box-driven reporter activity correlates with an observed increase in [32P]orthophosphate incorporation into hARNT. Treatment with okadaic acid resulted in a 12-fold increase in [32P]orthophosphate incorporation into hARNT that was transiently expressed in COS-1 cells; an increase in the number of tryptic phosphopeptides generated from hARNT digests on two-dimensional phosphopeptide maps was also observed. Despite the significant increase in [32P]orthophosphate incorporation into hARNT, serine remained the predominantly phosphorylated residue. Clearly, increased serine phosphorylation does not appear to negatively regulate hARNT homodimerization or transactivation potential. These results demonstrate that increased hARNT homodimer signaling in COS-1 cells may result from a direct change in hARNT phosphorylation status.
UR - http://www.scopus.com/inward/record.url?scp=0036252121&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036252121&partnerID=8YFLogxK
U2 - 10.1023/A:1015332217714
DO - 10.1023/A:1015332217714
M3 - Article
C2 - 12046689
AN - SCOPUS:0036252121
SN - 0742-2091
VL - 18
SP - 109
EP - 120
JO - Cell Biology and Toxicology
JF - Cell Biology and Toxicology
IS - 2
ER -