On an evolution equation in a cell motility model

Matthew S. Mizuhara, Leonid Berlyand, Volodymyr Rybalko, Lei Zhang

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

This paper deals with the evolution equation of a curve obtained as the sharp interface limit of a non-linear system of two reaction-diffusion PDEs. This system was introduced as a phase-field model of (crawling) motion of eukaryotic cells on a substrate. The key issue is the evolution of the cell membrane (interface curve) which involves shape change and net motion. This issue can be addressed both qualitatively and quantitatively by studying the evolution equation of the sharp interface limit for this system. However, this equation is non-linear and non-local and existence of solutions presents a significant analytical challenge. We establish existence of solutions for a wide class of initial data in the so-called subcritical regime. Existence is proved in a two step procedure. First, for smooth (H2) initial data we use a regularization technique. Second, we consider non-smooth initial data that are more relevant from the application point of view. Here, uniform estimates on the time when solutions exist rely on a maximum principle type argument. We also explore the long time behavior of the model using both analytical and numerical tools. We prove the nonexistence of traveling wave solutions with nonzero velocity. Numerical experiments show that presence of non-linearity and asymmetry of the initial curve results in a net motion which distinguishes it from classical volume preserving curvature motion. This is done by developing an algorithm for efficient numerical resolution of the non-local term in the evolution equation.

Original languageEnglish (US)
Pages (from-to)12-25
Number of pages14
JournalPhysica D: Nonlinear Phenomena
Volume318-319
DOIs
StatePublished - Apr 1 2016

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Condensed Matter Physics
  • Applied Mathematics

Fingerprint Dive into the research topics of 'On an evolution equation in a cell motility model'. Together they form a unique fingerprint.

  • Cite this