Abstract
The paper considers the wave equation, with constant or variable coefficients in Rn, with odd n ≥ 3. We study the asymptotics of the distribution μ1 of the random solution at time t ∈ R as t ∞. It is assumed that the initial measure μ0 has zero mean, translation-invariant covariance matrices, and finite expected energy density. We also assume that μ0 satisfies a Rosenblatt- or Ibragimov-Linnik-type space mixing condition. The main result is the convergence of μ1 to a Gaussian measure μ∞ as t → ∞, which gives a Central Limit Theorem (CLT) for the wave equation. The proof for the case of constant coefficients is based on an analysis of long-time asymptotics of the solution in the Fourier representation and Bernstein's "room-corridor" argument. The case of variable coefficients is treated by using a version of the scattering theory for infinite energy solutions, based on Vainberg's results on local energy decay.
Original language | English (US) |
---|---|
Pages (from-to) | 1219-1253 |
Number of pages | 35 |
Journal | Journal of Statistical Physics |
Volume | 108 |
Issue number | 5-6 |
DOIs | |
State | Published - 2002 |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Mathematical Physics