TY - JOUR

T1 - On Exact Solutions of Rarefaction-Rarefaction Interactions in Compressible Isentropic Flow

AU - Jenssen, Helge Kristian

N1 - Funding Information:
Partially supported by NSF Grant DMS-1311353.
Publisher Copyright:
© 2016, Springer International Publishing.

PY - 2017/12/1

Y1 - 2017/12/1

N2 - Consider the interaction of two centered rarefaction waves in one-dimensional, compressible gas flow with pressure function p(ρ) = a2ργ with γ> 1. The classic hodograph approach of Riemann provides linear 2nd order equations for the time and space variables t, x as functions of the Riemann invariants r, s within the interaction region. It is well known that t(r, s) can be given explicitly in terms of the hypergeometric function. We present a direct calculation (based on works by Darboux and Martin) of this formula, and show how the same approach provides an explicit formula for x(r, s) in terms of Appell functions (two-variable hypergeometric functions). Motivated by the issue of vacuum and total variation estimates for 1-d Euler flows, we then use the explicit t-solution to monitor the density field and its spatial variation in interactions of two centered rarefaction waves. It is found that the variation is always non-monotone, and that there is an overall increase in density variation if and only if γ> 3. We show that infinite duration of the interaction is characterized by approach toward vacuum in the interaction region, and that this occurs if and only if the Riemann problem defined by the extreme initial states generates a vacuum. Finally, it is verified that the minimal density in such interactions decays at rate O(1)/t.

AB - Consider the interaction of two centered rarefaction waves in one-dimensional, compressible gas flow with pressure function p(ρ) = a2ργ with γ> 1. The classic hodograph approach of Riemann provides linear 2nd order equations for the time and space variables t, x as functions of the Riemann invariants r, s within the interaction region. It is well known that t(r, s) can be given explicitly in terms of the hypergeometric function. We present a direct calculation (based on works by Darboux and Martin) of this formula, and show how the same approach provides an explicit formula for x(r, s) in terms of Appell functions (two-variable hypergeometric functions). Motivated by the issue of vacuum and total variation estimates for 1-d Euler flows, we then use the explicit t-solution to monitor the density field and its spatial variation in interactions of two centered rarefaction waves. It is found that the variation is always non-monotone, and that there is an overall increase in density variation if and only if γ> 3. We show that infinite duration of the interaction is characterized by approach toward vacuum in the interaction region, and that this occurs if and only if the Riemann problem defined by the extreme initial states generates a vacuum. Finally, it is verified that the minimal density in such interactions decays at rate O(1)/t.

UR - http://www.scopus.com/inward/record.url?scp=85032196602&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85032196602&partnerID=8YFLogxK

U2 - 10.1007/s00021-016-0309-y

DO - 10.1007/s00021-016-0309-y

M3 - Article

AN - SCOPUS:85032196602

VL - 19

SP - 685

EP - 708

JO - Journal of Mathematical Fluid Mechanics

JF - Journal of Mathematical Fluid Mechanics

SN - 1422-6928

IS - 4

ER -