On intrinsic geometry of surfaces in normed spaces

Dmitri Burago, Sergei Ivanov

Research output: Contribution to journalArticle

4 Scopus citations

Abstract

We prove three facts about intrinsic geometry of surfaces in a normed (Minkowski) space. When put together, these facts demonstrate a rather intriguing picture. We show that (1) geodesics on saddle surfaces (in a space of any dimension) behave as they are expected to: they have no conjugate points and thus minimize length in their homotopy class; (2) in contrast, every two-dimensional Finsler manifold can be locally embedded as a saddle surface in a 4-dimensional space; and (3) geodesics on convex surfaces in a 3-dimensional space also behave as they are expected to: on a complete strictly convex surface, no complete geodesic minimizes the length globally.

Original languageEnglish (US)
Pages (from-to)2275-2298
Number of pages24
JournalGeometry and Topology
Volume15
Issue number4
DOIs
StatePublished - 2011

All Science Journal Classification (ASJC) codes

  • Geometry and Topology

Fingerprint Dive into the research topics of 'On intrinsic geometry of surfaces in normed spaces'. Together they form a unique fingerprint.

  • Cite this