On long range dependence in global surface temperature series

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Long Range Dependence (LRD) scaling behavior has been argued to characterize long-term surface temperature time series. LRD is typically measured by the so-called "Hurst" coefficient, "H". Using synthetic temperature time series generated by a simple climate model with known physics, I demonstrate that the values of H obtained for observational temperature time series can be understood in terms of the linear response to past estimated natural and anthropogenic external radiative forcing combined with the effects of random white noise weather forcing. The precise value of H is seen to depend on the particular noise realization. The overall distribution obtained over an ensemble of noise realizations is seen to be a function of the relative amplitude of external forcing and internal stochastic variability and additionally in climate "proxy" records, the amount of non-climatic noise present. There is no obvious reason to appeal to more exotic physics for an explanation of the apparent scaling behavior in observed temperature data.

Original languageEnglish (US)
Pages (from-to)267-276
Number of pages10
JournalClimatic Change
Volume107
Issue number3
DOIs
StatePublished - Aug 2011

All Science Journal Classification (ASJC) codes

  • Global and Planetary Change
  • Atmospheric Science

Fingerprint

Dive into the research topics of 'On long range dependence in global surface temperature series'. Together they form a unique fingerprint.

Cite this