TY - GEN
T1 - On robustness properties in Empirical Centroid Fictitious Play
AU - Swensony, Brian
AU - Kar, Soummya
AU - Xavier, Joao
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/2/8
Y1 - 2015/2/8
N2 - Empirical Centroid Fictitious Play (ECFP) is a generalization of the well-known Fictitious Play (FP) algorithm designed for implementation in large-scale games. In ECFP, the set of players is subdivided into equivalence classes with players in the same class possessing similar properties. Players choose a next-stage action by tracking and responding to aggregate statistics related to each equivalence class. This setup alleviates the difficult task of tracking and responding to the statistical behavior of every individual player, as is the case in traditional FP. Aside from ECFP, many useful modifications have been proposed to classical FP, e.g., rules allowing for network-based implementation, increased computational efficiency, and stronger forms of learning. Such modifications tend to be of great practical value; however, their effectiveness relies heavily on two fundamental properties of FP: robustness to alterations in the empirical distribution step size process, and robustness to best-response perturbations. The main contribution of the paper is to show that similar robustness properties also hold for the ECFP algorithm. This result serves as a first step in enabling practical modifications to ECFP, similar to those already developed for FP.
AB - Empirical Centroid Fictitious Play (ECFP) is a generalization of the well-known Fictitious Play (FP) algorithm designed for implementation in large-scale games. In ECFP, the set of players is subdivided into equivalence classes with players in the same class possessing similar properties. Players choose a next-stage action by tracking and responding to aggregate statistics related to each equivalence class. This setup alleviates the difficult task of tracking and responding to the statistical behavior of every individual player, as is the case in traditional FP. Aside from ECFP, many useful modifications have been proposed to classical FP, e.g., rules allowing for network-based implementation, increased computational efficiency, and stronger forms of learning. Such modifications tend to be of great practical value; however, their effectiveness relies heavily on two fundamental properties of FP: robustness to alterations in the empirical distribution step size process, and robustness to best-response perturbations. The main contribution of the paper is to show that similar robustness properties also hold for the ECFP algorithm. This result serves as a first step in enabling practical modifications to ECFP, similar to those already developed for FP.
UR - http://www.scopus.com/inward/record.url?scp=84962003907&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84962003907&partnerID=8YFLogxK
U2 - 10.1109/CDC.2015.7402719
DO - 10.1109/CDC.2015.7402719
M3 - Conference contribution
AN - SCOPUS:84962003907
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 3324
EP - 3330
BT - 54rd IEEE Conference on Decision and Control,CDC 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 54th IEEE Conference on Decision and Control, CDC 2015
Y2 - 15 December 2015 through 18 December 2015
ER -