On the central limit theorem for dynamical systems

Robert Burton, Manfred Denker

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

Given an aperiodic dynamical system (X, T, m) then there is an f ϵ L2(m) with ò f dm = 0 satisfying the Central Limit Theorem, i.e. if Smf = f +foT+…+f o Tm-1 and sm = ||Smf||2 then (formula presented) The analogous result also holds for flows.

Original languageEnglish (US)
Pages (from-to)715-726
Number of pages12
JournalTransactions of the American Mathematical Society
Volume302
Issue number2
DOIs
StatePublished - Aug 1987

Fingerprint

Central limit theorem
Dynamical systems
Dynamical system

All Science Journal Classification (ASJC) codes

  • Mathematics(all)
  • Applied Mathematics

Cite this

Burton, Robert ; Denker, Manfred. / On the central limit theorem for dynamical systems. In: Transactions of the American Mathematical Society. 1987 ; Vol. 302, No. 2. pp. 715-726.
@article{6a80981114d440299f866b6dc928ce8a,
title = "On the central limit theorem for dynamical systems",
abstract = "Given an aperiodic dynamical system (X, T, m) then there is an f ϵ L2(m) with {\`o} f dm = 0 satisfying the Central Limit Theorem, i.e. if Smf = f +foT+…+f o Tm-1 and sm = ||Smf||2 then (formula presented) The analogous result also holds for flows.",
author = "Robert Burton and Manfred Denker",
year = "1987",
month = "8",
doi = "10.1090/S0002-9947-1987-0891642-6",
language = "English (US)",
volume = "302",
pages = "715--726",
journal = "Transactions of the American Mathematical Society",
issn = "0002-9947",
publisher = "American Mathematical Society",
number = "2",

}

On the central limit theorem for dynamical systems. / Burton, Robert; Denker, Manfred.

In: Transactions of the American Mathematical Society, Vol. 302, No. 2, 08.1987, p. 715-726.

Research output: Contribution to journalArticle

TY - JOUR

T1 - On the central limit theorem for dynamical systems

AU - Burton, Robert

AU - Denker, Manfred

PY - 1987/8

Y1 - 1987/8

N2 - Given an aperiodic dynamical system (X, T, m) then there is an f ϵ L2(m) with ò f dm = 0 satisfying the Central Limit Theorem, i.e. if Smf = f +foT+…+f o Tm-1 and sm = ||Smf||2 then (formula presented) The analogous result also holds for flows.

AB - Given an aperiodic dynamical system (X, T, m) then there is an f ϵ L2(m) with ò f dm = 0 satisfying the Central Limit Theorem, i.e. if Smf = f +foT+…+f o Tm-1 and sm = ||Smf||2 then (formula presented) The analogous result also holds for flows.

UR - http://www.scopus.com/inward/record.url?scp=33745239179&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33745239179&partnerID=8YFLogxK

U2 - 10.1090/S0002-9947-1987-0891642-6

DO - 10.1090/S0002-9947-1987-0891642-6

M3 - Article

AN - SCOPUS:33745239179

VL - 302

SP - 715

EP - 726

JO - Transactions of the American Mathematical Society

JF - Transactions of the American Mathematical Society

SN - 0002-9947

IS - 2

ER -