On the nonuniqueness of receiver function inversions

C. J. Ammon, G. E. Randall, G. Zandt

Research output: Contribution to journalArticle

508 Scopus citations

Abstract

To study the resolving power of teleseismic P waveforms for receiver structure, we model synthetic waveforms using a time domain waveform inversion scheme beginning with a range of initial models to estimate the range of acceptable velocity structures. We present the results of more than 235 waveform inversions for one-dimensional velocity structures that indicate that the primary sensitivity of a receiver function is to high wavenumber velocity changes, and a depth-velocity product, not simply velocity. The range of slownesses in a typical receiver function study does not appear to be broad enough to remove the depth-velocity ambiguity; the inclusion of a priori information is necessary. -from Authors

Original languageEnglish (US)
Pages (from-to)15,303-15,318
JournalJournal of Geophysical Research
Volume95
Issue numberB10
DOIs
StatePublished - Jan 1 1990

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'On the nonuniqueness of receiver function inversions'. Together they form a unique fingerprint.

  • Cite this