TY - JOUR
T1 - On the use of LES-based turbulent thermal-stress models for rod bundle simulations
AU - Martínez, Javier
AU - Lan, Yu Hsiang
AU - Merzari, Elia
AU - Min, M.
N1 - Funding Information:
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan .
Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2019/10
Y1 - 2019/10
N2 - An alternative methodology is proposed here to overcome the excessive cost of large eddy simulations (LES) of full-length heated rod bundle calculations, while improving the inaccurate results typically obtained with Reynolds-averaged Navier–Stokes equations (RANS). While the cost of the full-length LES is generally too high, LES of a small section of a single rod is usually affordable. The idea presented here consists of using the information granted by the small LES calculation to determine the appropriate turbulence viscosity or turbulent thermal diffusivity that can be used to solve only for the temperature field in a pseudo-RANS approach. The study has been performed with single-rod simulations with a P/D of 1.12 and 1.24, considering rod lengths that are representative of reactor applications, for the cases of uniform heat flux and a more realistic cosine-like axial heat distribution. The spectral element code Nek5000 has been used for all LES, RANS, and pseudo-RANS simulations. The recently proposed Nek5000 steady-state solver has been used for solving the temperature field in the pseudo-RANS approach and has proved significantly faster than transient schemes. Prediction of thermal quantities is compared with classical linear and nonlinear RANS models. LES for the full-length rods has also been performed and is used as a reference. Results of the proposed method show significant improvements with respect to those obtained with RANS.
AB - An alternative methodology is proposed here to overcome the excessive cost of large eddy simulations (LES) of full-length heated rod bundle calculations, while improving the inaccurate results typically obtained with Reynolds-averaged Navier–Stokes equations (RANS). While the cost of the full-length LES is generally too high, LES of a small section of a single rod is usually affordable. The idea presented here consists of using the information granted by the small LES calculation to determine the appropriate turbulence viscosity or turbulent thermal diffusivity that can be used to solve only for the temperature field in a pseudo-RANS approach. The study has been performed with single-rod simulations with a P/D of 1.12 and 1.24, considering rod lengths that are representative of reactor applications, for the cases of uniform heat flux and a more realistic cosine-like axial heat distribution. The spectral element code Nek5000 has been used for all LES, RANS, and pseudo-RANS simulations. The recently proposed Nek5000 steady-state solver has been used for solving the temperature field in the pseudo-RANS approach and has proved significantly faster than transient schemes. Prediction of thermal quantities is compared with classical linear and nonlinear RANS models. LES for the full-length rods has also been performed and is used as a reference. Results of the proposed method show significant improvements with respect to those obtained with RANS.
UR - http://www.scopus.com/inward/record.url?scp=85069693153&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85069693153&partnerID=8YFLogxK
U2 - 10.1016/j.ijheatmasstransfer.2019.07.049
DO - 10.1016/j.ijheatmasstransfer.2019.07.049
M3 - Article
AN - SCOPUS:85069693153
SN - 0017-9310
VL - 142
JO - International Journal of Heat and Mass Transfer
JF - International Journal of Heat and Mass Transfer
M1 - 118399
ER -