TY - JOUR
T1 - Open Questions in Cosmic-Ray Research at Ultrahigh Energies
AU - Alves Batista, Rafael
AU - Biteau, Jonathan
AU - Bustamante, Mauricio
AU - Dolag, Klaus
AU - Engel, Ralph
AU - Fang, Ke
AU - Kampert, Karl Heinz
AU - Kostunin, Dmitriy
AU - Mostafa, Miguel
AU - Murase, Kohta
AU - Oikonomou, Foteini
AU - Olinto, Angela V.
AU - Panasyuk, Mikhail I.
AU - Sigl, Guenter
AU - Taylor, Andrew M.
AU - Unger, Michael
N1 - Funding Information:
We acknowledge the support of the Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence Origin and Structure of the Universe, where this work was initiated. We thank the organizers of the The High-Energy Universe: Gamma-Ray, Neutrino, and cosmic-ray astronomy MIAPP Program, Francis Halzen, Angela Olinto, Elisa Resconi, and Paolo Padovani, for the very fruitful workshop. RB is supported by grant #2017/12828-4, São Paulo Research Foundation (FAPESP). MB is supported by the Danmarks Grundforskningsfond Grant 1041811001 and Villum Fonden project no. 13164. RE, K-HK, GS, and MU are supported by the Bundesministerium für Bildung und Forschung (BMBF) and the Deutsche Forschungsgemeinschaft (DFG). KF acknowledges support from the Einstein Fellowship from the NASA Hubble Fellowship Program. The work of KM is supported by Alfred P. Sloan Foundation and NSF grant No. PHY-1620777. FO is supported by the Deutsche Forschungsgemeinschaft through grant SFB 1258 Neutrinos and Dark Matter in Astro- and Particle Physics.
Funding Information:
RB is supported by grant #2017/12828-4, São Paulo Research Foundation (FAPESP). MB is supported by the Danmarks Grundforskningsfond Grant 1041811001 and Villum Fonden project no. 13164. RE, K-HK, GS, and MU are supported by the Bundesministerium für Bildung und Forschung (BMBF) and the Deutsche Forschungsgemeinschaft (DFG). KF acknowledges support from the Einstein Fellowship from the NASA Hubble Fellowship Program. The work of KM is supported by Alfred P. Sloan Foundation and NSF grant No. PHY-1620777. FO is supported by the Deutsche Forschungsgemeinschaft through grant SFB 1258 Neutrinos and Dark Matter in Astro-and Particle Physics.
Funding Information:
We acknowledge the support of the Munich Institute for Astro-and Particle Physics (MIAPP) of the DFG cluster of excellence Origin and Structure of the Universe, where this work was initiated. We thank the organizers of the The High-Energy Universe: Gamma-Ray, Neutrino, and cosmic-ray astronomy MIAPP Program, Francis Halzen, Angela Olinto, Elisa Resconi, and Paolo Padovani, for the very fruitful workshop.
Publisher Copyright:
© Copyright © 2019 Alves Batista, Biteau, Bustamante, Dolag, Engel, Fang, Kampert, Kostunin, Mostafa, Murase, Oikonomou, Olinto, Panasyuk, Sigl, Taylor and Unger.
PY - 2019/6/4
Y1 - 2019/6/4
N2 - We review open questions and prospects for progress in ultrahigh-energy cosmic ray (UHECR) research, based on a series of discussions that took place during the “The High-Energy Universe: Gamma-Ray, Neutrino, and Cosmic-ray Astronomy” MIAPP workshop in 2018. Specifically, we overview open questions on the origin of the bulk of UHECRs, the UHECR mass composition, the origin of the end of the cosmic-ray spectrum, the transition from Galactic to extragalactic cosmic rays, the effect of magnetic fields on the trajectories of UHECRs, anisotropy expectations for specific astrophysical scenarios, hadronic interactions, and prospects for discovering neutral particles as well as new physics at ultrahigh energies. We also briefly overview upcoming and proposed UHECR experiments and discuss their projected science reach.
AB - We review open questions and prospects for progress in ultrahigh-energy cosmic ray (UHECR) research, based on a series of discussions that took place during the “The High-Energy Universe: Gamma-Ray, Neutrino, and Cosmic-ray Astronomy” MIAPP workshop in 2018. Specifically, we overview open questions on the origin of the bulk of UHECRs, the UHECR mass composition, the origin of the end of the cosmic-ray spectrum, the transition from Galactic to extragalactic cosmic rays, the effect of magnetic fields on the trajectories of UHECRs, anisotropy expectations for specific astrophysical scenarios, hadronic interactions, and prospects for discovering neutral particles as well as new physics at ultrahigh energies. We also briefly overview upcoming and proposed UHECR experiments and discuss their projected science reach.
UR - http://www.scopus.com/inward/record.url?scp=85077662267&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077662267&partnerID=8YFLogxK
U2 - 10.3389/fspas.2019.00023
DO - 10.3389/fspas.2019.00023
M3 - Review article
AN - SCOPUS:85077662267
VL - 6
JO - Frontiers in Astronomy and Space Sciences
JF - Frontiers in Astronomy and Space Sciences
SN - 2296-987X
M1 - 23
ER -