Optimal offloading for dynamic compute-intensive applications in wireless networks

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

With the rapid growth of wireless compute-intensive services (such as image recognition, real-time language translation, or other artificial intelligence applications), efficient wireless algorithm design should not only address when and which users should transmit at each time instance (referred to as wireless scheduling) but also determine where the computation should be executed (referred to as offloading decision) with the goal of minimizing both computing latency and energy consumption. Despite the presence of a variety of earlier works on the efficient offloading design in wireless networks, to the best of our knowledge, there does not exist a work on the realistic user- level dynamic model, where each incoming user demands a heavy computation and leaves the system once its computing request is completed. To this end, we formulate a problem of an optimal offloading design in the presence of dynamic compute-intensive applications in wireless networks. Then, we show that there exists a fundamental logarithmic energy- workload tradeoff for any feasible offloading algorithm, and develop an optimal threshold-based offloading algorithm that achieves this fundamental logarithmic bound.

Original languageEnglish (US)
Title of host publication2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728109626
DOIs
StatePublished - Dec 2019
Event2019 IEEE Global Communications Conference, GLOBECOM 2019 - Waikoloa, United States
Duration: Dec 9 2019Dec 13 2019

Publication series

Name2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings

Conference

Conference2019 IEEE Global Communications Conference, GLOBECOM 2019
Country/TerritoryUnited States
CityWaikoloa
Period12/9/1912/13/19

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Hardware and Architecture
  • Information Systems
  • Signal Processing
  • Information Systems and Management
  • Safety, Risk, Reliability and Quality
  • Media Technology
  • Health Informatics

Fingerprint

Dive into the research topics of 'Optimal offloading for dynamic compute-intensive applications in wireless networks'. Together they form a unique fingerprint.

Cite this