Optimal power, power limit, and damping of vibration piezoelectric power harvesters

Yabin Liao, Henry Sodano

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Power harvesting describes the process of acquiring the ambient energy surrounding a system and converting it into usable electrical energy. Much of the work over the past two decades has focused on the conversion of ambient vibration energy sources using piezoelectric, electromagnetic and electrostatic transduction. Attempts were made to obtain a general model that could be applied to any transduction mechanism. Of the most interest is an electromagnetic generator model that was used by many researchers to model piezoelectric power harvesters. Two major results from the model are the power limit expression and the equal relationship between the electrically induced damping and the mechanical damping to reach the power limit. However, piezoelectric power harvesters cannot be accurately modeled by this electromagnetic model due to the essential difference in physics. There have also been attempts to obtain the power limit expression based on piezoelectric relationships, but they either neglect the piezoelectric backward coupling to the structure, or assume the power limit occurs at the resonance of the system. This paper obtains the power limit expression based on the piezoelectric coupled equations without those assumptions. In addition, the relationship between the electrically induced damping and mechanical damping at the power limit is studied. Furthermore, a closed-form criterion is derived and proposed to define strongly and weakly coupling power harvesters, whose differences in power characteristics are explained through analytical and numerical analysis. While most of the discussion is focused on linear power harvesters connected to a resistive circuit, the aim of this paper is to provide a comprehensive and deep understanding of this simple configuration, answers to important questions, and a starting point to develop a more general theory on power harvesters because similar system characteristics are observed in power harvesters with more complexities.

Original languageEnglish (US)
Title of host publicationBehavior and Mechanics of Multifunctional Materials and Composites XII
EditorsHani E. Naguib
PublisherSPIE
ISBN (Electronic)9781510616882
DOIs
StatePublished - Jan 1 2018
EventBehavior and Mechanics of Multifunctional Materials and Composites XII 2018 - Denver, United States
Duration: Mar 5 2018Mar 8 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10596
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherBehavior and Mechanics of Multifunctional Materials and Composites XII 2018
CountryUnited States
CityDenver
Period3/5/183/8/18

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this

Liao, Y., & Sodano, H. (2018). Optimal power, power limit, and damping of vibration piezoelectric power harvesters. In H. E. Naguib (Ed.), Behavior and Mechanics of Multifunctional Materials and Composites XII [105961S] (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10596). SPIE. https://doi.org/10.1117/12.2307483