Optimal rates for random Fourier features

Research output: Contribution to journalConference articlepeer-review

48 Scopus citations

Abstract

Kernel methods represent one of the most powerful tools in machine learning to tackle problems expressed in terms of function values and derivatives due to their capability to represent and model complex relations. While these methods show good versatility, they are computationally intensive and have poor scalability to large data as they require operations on Gram matrices. In order to mitigate this serious computational limitation, recently randomized constructions have been proposed in the literature, which allow the application of fast linear algorithms. Random Fourier features (RFF) are among the most popular and widely applied constructions: they provide an easily computable, low-dimensional feature representation for shift-invariant kernels. Despite the popularity of RFFs, very little is understood theoretically about their approximation quality. In this paper, we provide a detailed finite-sample theoretical analysis about the approximation quality of RFFs by (i) establishing optimal (in terms of the RFF dimension, and growing set size) performance guarantees in uniform norm, and (ii) presenting guarantees in Lr (1 ≤ r < ∞) norms. We also propose an RFF approximation to derivatives of a kernel with a theoretical study on its approximation quality.

Original languageEnglish (US)
Pages (from-to)1144-1152
Number of pages9
JournalAdvances in Neural Information Processing Systems
Volume2015-January
StatePublished - 2015
Event29th Annual Conference on Neural Information Processing Systems, NIPS 2015 - Montreal, Canada
Duration: Dec 7 2015Dec 12 2015

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Optimal rates for random Fourier features'. Together they form a unique fingerprint.

Cite this