TY - JOUR
T1 - Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks
AU - Zomorrodi, Ali R.
AU - Lafontaine Rivera, Jimmy G.
AU - Liao, James C.
AU - Maranas, Costas D.
PY - 2013/9
Y1 - 2013/9
N2 - The ensemble modeling (EM) approach has shown promise in capturing kinetic and regulatory effects in the modeling of metabolic networks. Efficacy of the EM procedure relies on the identification of model parameterizations that adequately describe all observed metabolic phenotypes upon perturbation. In this study, we propose an optimization-based algorithm for the systematic identification of genetic/enzyme perturbations to maximally reduce the number of models retained in the ensemble after each round of model screening. The key premise here is to design perturbations that will maximally scatter the predicted steady-state fluxes over the ensemble parameterizations. We demonstrate the applicability of this procedure for an Escherichia coli metabolic model of central metabolism by successively identifying single, double, and triple enzyme perturbations that cause the maximum degree of flux separation between models in the ensemble. Results revealed that optimal perturbations are not always located close to reaction(s) whose fluxes are measured, especially when multiple perturbations are considered. In addition, there appears to be a maximum number of simultaneous perturbations beyond which no appreciable increase in the divergence of flux predictions is achieved. Overall, this study provides a systematic way of optimally designing genetic perturbations for populating the ensemble of models with relevant model parameterizations.
AB - The ensemble modeling (EM) approach has shown promise in capturing kinetic and regulatory effects in the modeling of metabolic networks. Efficacy of the EM procedure relies on the identification of model parameterizations that adequately describe all observed metabolic phenotypes upon perturbation. In this study, we propose an optimization-based algorithm for the systematic identification of genetic/enzyme perturbations to maximally reduce the number of models retained in the ensemble after each round of model screening. The key premise here is to design perturbations that will maximally scatter the predicted steady-state fluxes over the ensemble parameterizations. We demonstrate the applicability of this procedure for an Escherichia coli metabolic model of central metabolism by successively identifying single, double, and triple enzyme perturbations that cause the maximum degree of flux separation between models in the ensemble. Results revealed that optimal perturbations are not always located close to reaction(s) whose fluxes are measured, especially when multiple perturbations are considered. In addition, there appears to be a maximum number of simultaneous perturbations beyond which no appreciable increase in the divergence of flux predictions is achieved. Overall, this study provides a systematic way of optimally designing genetic perturbations for populating the ensemble of models with relevant model parameterizations.
UR - http://www.scopus.com/inward/record.url?scp=84883799668&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883799668&partnerID=8YFLogxK
U2 - 10.1002/biot.201200270
DO - 10.1002/biot.201200270
M3 - Article
C2 - 23450699
AN - SCOPUS:84883799668
SN - 1860-6768
VL - 8
SP - 1090
EP - 1104
JO - Biotechnology Journal
JF - Biotechnology Journal
IS - 9
ER -