Optimization of a dynamic model of magnetic actuation of an origami mechanism

Landen Bowen, Kara Springsteen, Mary Frecker, Timothy Simpson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Self-folding origami has the potential to be utilized in novel areas such as self-assembling robotics and shape-morphing structures. Important decisions in the development of such applications include the choice of active material and its placement on the origami model. With proper placement, the error between the actual and target shapes can be minimized along with cost, weight, and power requirements. Through the incorporation of dynamic models of self-folding origami mechanisms into an optimization routine, optimal orientations for magnetically-active material are identified that minimize error to specified target shapes. The dynamic models, created using Adams 2014, are refined by improvements to magnetic material simulation and more accurate joint stiffness characterization. Self-folding dynamic models of the waterbomb base and Shafer's Frog Tongue are optimized, demonstrating the potential use of this process as a design tool for other self-folding origami mechanisms.

Original languageEnglish (US)
Title of host publication39th Mechanisms and Robotics Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791857137
DOIs
StatePublished - Jan 1 2015
EventASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015 - Boston, United States
Duration: Aug 2 2015Aug 5 2015

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume5B-2015

Other

OtherASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015
CountryUnited States
CityBoston
Period8/2/158/5/15

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Optimization of a dynamic model of magnetic actuation of an origami mechanism'. Together they form a unique fingerprint.

Cite this