Optimization of Circular Force Generator placement for rotorcraft hub force and moment cancellation

Keerti Prakash, George A. Lesieutre

Research output: Contribution to journalConference article

Abstract

High-speed forward flight in helicopters causes high vibratory loads at the rotor hub, which are transmitted into the fuselage. This results in pilot fatigue and high maintenance requirements. Anti-vibration devices or vibration absorbers may be placed near the hub to reduce vibration transmission, while active vibration control systems may typically sense and reduce forces in specific areas of the fuselage. This paper focuses on developing strategies for optimal deployment (sizing, placement and control) of Circular Force Generators (CFGs) for vibration cancellation. Particle Swarm Optimization was used to carry out the optimization for two different load cases corresponding to different flight conditions. Converged solutions for CFG placement were obtained for: different individual load cases; multiple load cases; constrained and unconstrained actuator locations; and using different numbers of actuators. Two CFGs were found to be sufficient to cancel hub loads for a single load case. When two load cases are considered in multi-objective optimization, three actuators can substantially cancel the hub loads (to within 1%). And using four actuators can cancel the hub loads to within 0.1%. Finally, performance under actuator failure was considered as a way to distinguish among otherwise similarly-performing placement solutions.

Original languageEnglish (US)
Pages (from-to)1248-1258
Number of pages11
JournalAnnual Forum Proceedings - AHS International
StatePublished - Jan 1 2017
Event73rd American Helicopter Society International Annual Forum and Technology Display 2017 - Fort Worth, United States
Duration: May 9 2017May 11 2017

Fingerprint

Actuators
Fuselages
Vibration control
Multiobjective optimization
Helicopters
Particle swarm optimization (PSO)
Vibrations (mechanical)
Rotors
Fatigue of materials
Control systems

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this

@article{9998feca7e874b9f9eb27981cf07cdd4,
title = "Optimization of Circular Force Generator placement for rotorcraft hub force and moment cancellation",
abstract = "High-speed forward flight in helicopters causes high vibratory loads at the rotor hub, which are transmitted into the fuselage. This results in pilot fatigue and high maintenance requirements. Anti-vibration devices or vibration absorbers may be placed near the hub to reduce vibration transmission, while active vibration control systems may typically sense and reduce forces in specific areas of the fuselage. This paper focuses on developing strategies for optimal deployment (sizing, placement and control) of Circular Force Generators (CFGs) for vibration cancellation. Particle Swarm Optimization was used to carry out the optimization for two different load cases corresponding to different flight conditions. Converged solutions for CFG placement were obtained for: different individual load cases; multiple load cases; constrained and unconstrained actuator locations; and using different numbers of actuators. Two CFGs were found to be sufficient to cancel hub loads for a single load case. When two load cases are considered in multi-objective optimization, three actuators can substantially cancel the hub loads (to within 1{\%}). And using four actuators can cancel the hub loads to within 0.1{\%}. Finally, performance under actuator failure was considered as a way to distinguish among otherwise similarly-performing placement solutions.",
author = "Keerti Prakash and Lesieutre, {George A.}",
year = "2017",
month = "1",
day = "1",
language = "English (US)",
pages = "1248--1258",
journal = "Annual Forum Proceedings - AHS International",
issn = "1552-2938",
publisher = "American Helicopter Society",

}

Optimization of Circular Force Generator placement for rotorcraft hub force and moment cancellation. / Prakash, Keerti; Lesieutre, George A.

In: Annual Forum Proceedings - AHS International, 01.01.2017, p. 1248-1258.

Research output: Contribution to journalConference article

TY - JOUR

T1 - Optimization of Circular Force Generator placement for rotorcraft hub force and moment cancellation

AU - Prakash, Keerti

AU - Lesieutre, George A.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - High-speed forward flight in helicopters causes high vibratory loads at the rotor hub, which are transmitted into the fuselage. This results in pilot fatigue and high maintenance requirements. Anti-vibration devices or vibration absorbers may be placed near the hub to reduce vibration transmission, while active vibration control systems may typically sense and reduce forces in specific areas of the fuselage. This paper focuses on developing strategies for optimal deployment (sizing, placement and control) of Circular Force Generators (CFGs) for vibration cancellation. Particle Swarm Optimization was used to carry out the optimization for two different load cases corresponding to different flight conditions. Converged solutions for CFG placement were obtained for: different individual load cases; multiple load cases; constrained and unconstrained actuator locations; and using different numbers of actuators. Two CFGs were found to be sufficient to cancel hub loads for a single load case. When two load cases are considered in multi-objective optimization, three actuators can substantially cancel the hub loads (to within 1%). And using four actuators can cancel the hub loads to within 0.1%. Finally, performance under actuator failure was considered as a way to distinguish among otherwise similarly-performing placement solutions.

AB - High-speed forward flight in helicopters causes high vibratory loads at the rotor hub, which are transmitted into the fuselage. This results in pilot fatigue and high maintenance requirements. Anti-vibration devices or vibration absorbers may be placed near the hub to reduce vibration transmission, while active vibration control systems may typically sense and reduce forces in specific areas of the fuselage. This paper focuses on developing strategies for optimal deployment (sizing, placement and control) of Circular Force Generators (CFGs) for vibration cancellation. Particle Swarm Optimization was used to carry out the optimization for two different load cases corresponding to different flight conditions. Converged solutions for CFG placement were obtained for: different individual load cases; multiple load cases; constrained and unconstrained actuator locations; and using different numbers of actuators. Two CFGs were found to be sufficient to cancel hub loads for a single load case. When two load cases are considered in multi-objective optimization, three actuators can substantially cancel the hub loads (to within 1%). And using four actuators can cancel the hub loads to within 0.1%. Finally, performance under actuator failure was considered as a way to distinguish among otherwise similarly-performing placement solutions.

UR - http://www.scopus.com/inward/record.url?scp=85029617119&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85029617119&partnerID=8YFLogxK

M3 - Conference article

AN - SCOPUS:85029617119

SP - 1248

EP - 1258

JO - Annual Forum Proceedings - AHS International

JF - Annual Forum Proceedings - AHS International

SN - 1552-2938

ER -